Argentine Buckwheat Variety: Proximal Analysis, Mineral Content, Antinutritional Factors and Antioxidant Activity

MI Amieva, LN Fernández Solis, RE Rodriguez, CS Barcia

Abstract


Buckwheat is a pseudocereal, which has gained interest in recent years based on its biophysiological compounds. Since buckwheat is becoming popular nutrition source worldwide alternative, in Argentine has been working in obtaining new experimental line of buckwheat produced in the central region of the country in order to promote its use. The goal of this present work was to determine the proximal analysis, mineral content, antinutritional factors and antioxidant compounds and evaluate their activity in a new Argentine buckwheat called ALMNO13. Proximal Analysis was: moisture 11.5 g % ± 0.26, ash 2.0 g %±0.29; proteins 14% ± 0.18; fat 6.1 g % ± 0.19, fiber 15 % ± 0.40, carbohydrates 51.5 g %, caloric value 316 kcal. Mineral content was Cu: 5.40 mg/100g ± 0.19; Zn: 21.72 mg/100g ± 1.93; Fe: 25.48 mg/100g ± 4.23; Ca: 39 mg/100g ±0.77; K: 19.96 mg/100g ± 11.66; Mg: 22.55 mg/100g± 10.76; Mn:16.35 mg/100g ± 0.74; P:16.70 mg/100g ± 0.9; Cr: 0.37 mg/100g ± 0.06; Se: 0.022 mg/100g ± 0.7. The presence of antinutrional factors (saponins, oxalates, nitrates, phytates, lectins and trypsin inhibitors) was determined and resulted within the acceptable values for human consumption or were negative. Total phenols, flavonoids and antioxidant activity evaluated were: 133.5 ±0.78 mg of gallic acid equivalent/100g in dry weight; 24.80 ± 0.89 mg quercetin equivalent/100 g dry weight. The antioxidant activity was estimated by DPPH radical scavenging activity and nitric oxide scavenging activity were: 83.70 ± 1.86 and 48.02 ± 0.78respectively. These results show that the Argentine experimental line ALMNO13 buckwheat is safe for human consumption and can be used as an ingredient in food, contributing in the nutritional quality of the diet. This is the first report on the composition and antioxidant activity of this buckwheat new variety.

Keywords


buckwheat new line, proximal analysis, antinutritional factors, minerals content, polyphenols, flavonoids, antioxidant activity.

Full Text:

PDF

References


EASAC (2011). Plant genetic resources for foods and agriculture: roles and research priorities in the

European Union. Policy Report, 17 2011.

Brunori, A., Del Fiore, A., De Rossi, P., Nobili, C., Presenti, O., Procacci, S., Tolaini, V., Vitali, V.,

(2014). Minor crops exploitation to promote sustainability and healthy foods production. Rivista di

studi sulla sostenibilità 1, 35–44.

Li, S.Q. & Zhang, Q.H. (2001). Advances in the development of functional foods from buckwheat.

Critical Reviews in Food Science and Nutrition 41, 451–464.

Woo, S. H., Kamal, A. M., Tatsuro, S., Campbell, C. G., Adachi, T., Yun, Y. H., ... & Choi, J. S.

(2010). Buckwheat (Fagopyrum esculentum Moench.): concepts, prospects and potential. European

Journal of Plant Science and Biotechnology, 4, 1-16.

Brunori, A., Baviello, G., & Kajdi, F. (2012). Grain Yield and Rutin Content of Common and

Tartary Buckwheat Varieties Grown in North-Western Hungary. Eur. J. Plant Sci. Biotechnol, 6(2),

-74.

Wijngaard H. H, Arendt E. K. Buckwheat. Cereal Chem. (2006) .83(4):391–401.

Alvarez-Jubete, L., Wijngaard, H., Arendt, E.K., Gallagher, E. (2010). Polyphenol composition and

in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and

baking. Food Chemistry, 119: 770-778.

De Rossi, P., Del Fiore, A., Tolaini, V., Presenti, O., Antonini, A., Procacci, S., & Brunori, A. (2013).

Gli alimenti funzionali: potenzialità di utilizzo del grano sarraceno tartárico. Molini d’Italia, 9, 30-34.

Wieslander, G., Fabjan, N., Vogrincic, M., Kreft, I., Janson, C., Spetz-Nyström, U., & Norbäck, D.

(2011). Eating buckwheat cookies is associated with the reduction in serum levels of myeloperoxidase

and cholesterol: A double blind crossover study in day-care centre staffs. The Tohoku Journal of

Experimental Medicine, 225(2), 123-130.

Bewley, I. D., & Black, M. (1985). Seeds: Physiology. Plenum Press.

Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: antioxidants and beyond. The

American journal of clinical nutrition, 81(1), 215S-217S.

Zhang, G., Xu, Z., Gao, Y., Huang, X., Zou, Y., & Yang, T. (2015). Effects of germination on the

nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. Journal of Food

Science, 80(5), H1111-H1119.

Tomotake, H., Yamamoto, N., Yanaka, N., Ohinata, H., Yamazaki, R., Kayashita, J., & Kato, N.

(2006). High protein buckwheat flour suppresses hypercholesterolemia in rats and gallstone formation

in mice by hypercholesterolemic diet and body fat in rats because of its low protein

digestibility. Nutrition, 22(2), 166-173.

Nile, S. H., & Park, S. W. (2014). Edible berries: Bioactive components and their effect on human

health. Nutrition, 30(2), 134-144.

Jatoi, S. A., Kikuchi, A., Gilani, S. A., & Watanabe, K. N. (2007). Phytochemical, pharmacological

and ethnobotanical studies in mango ginger (Curcuma amada Roxb.; Zingiberaceae). Phytotherapy

Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of

Natural Product Derivatives, 21(6), 507-516.

Official Methods of Analysis.19th Ed. AOAC International, Gaithersburg, MD, USA, Official

Method 2008.01. Official Methods 925.10, 945.39, 978.04-968.01, 962.09, 945.46, 18 th Edition.

Correa, A. D., Jokl, L., & Carlsson, R. (1986). Chemical constituents, in vitro protein digestibility,

and presence of antinutritional substances in amaranth grains. Archivos latinoamericanos de

nutricion, 36(2), 319-326.

Unit, P., & World Health Organization. (1992). Quality control methods for medicinal plant

materials (No. WHO/PHARM/92.559/rev. 1). World Health Organization.

Official Methods of Analysis of AOAC International, Official Method 985.35, 18 th Edition. 2005.

Cataldo, D. A., Maroon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric

determination of nitrate in plant tissue by nitration of salicylic acid. Communications in soil science

and plant analysis, 6(1), 71-80.

Rucci, A. O., & Bertoni, M. H. (1974). Determinación de ácido fítico en subproductos de semilla de

girasol. In Anales de la Asociación Química Argentina (Vol. 62, pp. 365-368).

Do Prado, V. C., Antunes, P. L., & Sgarbieri, V. C. (1980). Antinutrient occurrence and some

physicochemical properties of the protein fractions of five Brazilian soybean varieties. Archivos

latinoamericanos de nutricion, 30(4), 551-563.

Das Gupta, B. R., & Boroff, D. A. (1968). Separation of toxin and hemagglutinin from crystalline

toxin of Clostridium botulinum type A by anion exchange chromatography and determination of their

dimensions by gel filtration. Journal of Biological Chemistry, 243(5), 1065-1072.

Kakade, M. L., Rackis, J. J., McGhee, J. E., & Puski, G. (1974). Determination of trypsin inhibitor

activity of soy products: a collaborative analysis of an improved procedure.

Vinson, J. A., Proch, J., & Bose, P. (2001). Determination of quantity and quality of polyphenol

antioxidants in foods and beverages. Methods in Enzymology, 335, 103-114.

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.

Eberhardt, M. V., Lee, C. Y., & Liu, R. H. (2000). Antioxidant activity of fresh apples. Nature,

(6789), 903-904.

Burits, M., & Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy

research, 14(5), 323-328.

Marcocci, L., Packer, L., Droy-Lefaix, M. T., Sekaki, A., & Gardès-Albert, M. (1994). [46]

Antioxidant action of Ginkgo biloba extract EGb 761. Methods in enzymology, 234, 462-475.

Pandey, S., Senthil, A, and Fatema, K. (2015). Effect of hydrothermal treatment on the nutritional and

functional properties of husked and dehusked buckwheat. J. Food Process Technol. 6: 461.

Bonafaccia, G., Marocchini, M. and Kreft, I. (2003). Composition and technological properties of the

flour and bran from common and tartary buckwheat. Food Chem. 80: 9–15.

Bhavsar, G. J., Sawate, A. R., Kshirsagar, R. B. and Chappalwar, V. M. (2013). Studies on PhysicoChemical Characteristics of Buckwheat and Its Exploration in Bread as Functional Food. Int. J. Eng.

Res. Technol. 2(1): 3971- 3980.

Hatcher, D. W., You, S., Dexter, J. E., Campbell, C., & Izydorczyk, M. S. (2008). Evaluation of the

performance of flours from cross-and self-pollinating Canadian common buckwheat (Fagopyrum

esculentum Moench) cultivars in soba noodles. Food Chemistry, 107(2), 722-731.

Campbell, C. G. (1997). Buckwheat: Fagopyrum esculentum Moench (Vol. 19). Bioversity

International.

Wei, Y. M., Hu, X. Z., Zhang, G. Q., & Ouyang, S. H. (2003). Studies on the amino acid and mineral

content of buckwheat protein fractions. Food/Nahrung, 47(2), 114-116.

Kim, S. L., Kim, S. K., & Park, C. H. (2004). Introduction and nutritional evaluation of buckwheat

sprouts as a new vegetable. Food Research International, 37(4), 319-327.

Bárta, J., Kalinová, J., Moudrý, J., & Čurn, V. (2004). Effects of environmental factors on protein

content and composition in buckwheat flour. Cereal Research Communications, 32(4), 541-548.

Qin, P., Wang, Q., Shan, F., Hou, Z., & Ren, G. (2010). Nutritional composition and flavonoids

content of flour from different buckwheat cultivars. International Journal of Food Science &

Technology, 45(5), 951-958.

Raghuvanshi, R. S., Monika, V., & Soumya, G. (2017). Nutritional and phytochemical composition

of improved varieties of buckwheat grains (Fagopyrum esculentum Moench) in India. International

Journal of Basic and Applied Agricultural Research, 15(1/2), 101-105.

Alvarez‐Jubete, L., Holse, M., Hansen, Å., Arendt, E. K., & Gallagher, E. (2009). Impact of baking

on vitamin E content of pseudocereals amaranth, quinoa, and buckwheat. Cereal chemistry, 86(5),

-515.

Kozioł, M. J. (1992). Chemical composition and nutritional evaluation of quinoa (Chenopodium

quinoa Willd.). Journal of food composition and analysis, 5(1), 35-68.

Bressani, R. (1994). Composition and nutritional properties of amaranth. In: Paredes-Lopez O, editor.

Amaranth: Biology, Chemistry and Technology. Boca Raton, FL, USA: CRC Press, pp. 185-205.

Steadman, K. J., Burgoon, M. S., Lewis, B. A., Edwardson, S. E., & Obendorf, R. L. (2001). Minerals,

phytic acid, tannin and rutin in buckwheat seed milling fractions. Journal of the Science of Food and

Agriculture, 81(11), 1094-1100.

Ikeda, S., & Yamashita, Y. (1994). Buckwheat as a dietary source of zinc, copper and

manganese. Fagopyrum, 14, 29-34.

Ikeda, S., Tomura, K., Yamashita, Y., & Kreft, I. (2001). Minerals in buckwheat flours subjected to

enzymatic digestion. Fagopyrum, 18, 45-48.

Ikeda, S., Tomura, K., & Kreft, I. (2002). Nutritional characteristics of iron in buckwheat flours.

Ikeda, S., Tomura, K., Miya, M., & Kreft, I. (2003). Changes in the solubility of the minerals in

buckwheat noodles occurring by processing, cooking and enzymatic digestion. Fagopyrum, 20, 67-

Ikeda, S., Tomura, K., Lin, L., & Kreft, I. (2004). Nutritional characteristics of minerals in Tartary

buckwheat. Fagopyrum, 21, 79-84.

Ikeda, S., Yamashita, Y., Kusumoto, K., & Kreft, I. (2005). Nutritional characteristics of minerals in

various buckwheat groats. Fagopyrum, 22, 71-75.

Thompson, T. (2000). Folate, iron, and dietary fiber contents of the gluten-free diet. Journal of the

Academy of Nutrition and Dietetics, 100(11), 1389.

Kupper, C. (2005). Dietary guidelines and implementation for celiac

disease. Gastroenterology, 128(4), S121-S127.

Thompson, T., Dennis, M., Higgins, L. A., Lee, A. R., & Sharrett, M. K. (2005). Gluten‐free diet

survey: ¿are Americans with coeliac disease consuming recommended amounts of fibre, iron, calcium

and grain foods? Journal of human nutrition and dietetics, 18(3), 163-169.

Hopman, E. G., le Cessie, S., von Blomberg, B. M. E., & Mearin, M. L. (2006). Nutritional

management of the gluten-free diet in young people with celiac disease in The Netherlands. Journal

of pediatric gastroenterology and nutrition, 43(1), 102-108.

Steadman, K. J., Burgoon, M. S., Lewis, B. A., Edwardson, S. E., & Obendorf, R. L. (2001b).

Minerals, phytic acid, tannin and rutin in buckwheat seed milling fractions. Journal of the Science of

Food and Agriculture, 81(11), 1094-1100.

Ikeda, S., Yamashita, Y., Tomura, K., & Kreft, I. (2006). Nutritional comparison in mineral

characteristics between buckwheat and cereals. Fagopyrum, 23(5).

Ikeda, S., Yamashita, Y., & Kreft, I. (1999). Mineral composition of buckwheat by-products and its

processing characteristics to konjak preparation. Fagopyrum, 16(89).

Francis, G., Kerem, Z., Makkar, H. P., & Becker, K. (2002). The biological action of saponins in

animal systems: a review. British journal of Nutrition, 88(6), 587-605.

Oleszek, W., Junkuszew, M., & Stochmal, A. (1999). Determination and toxicity of saponins from

Amaranthus cruentus seeds. Journal of Agricultural and Food Chemistry, 47(9), 3685-3687.

Massey, L. K. (2007). Food oxalate: factors affecting measurement, biological variation, and

bioavailability. Journal of the American Dietetic Association, 107(7), 1191-1194.

Siener, R., Hönow, R., Voss, S., Seidler, A., & Hesse, A. (2006). Oxalate content of cereals and cereal

products. Journal of agricultural and food chemistry, 54(8), 3008-3011.

FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization)

(2003). Nitrate (and potential endogenous formation of Nnitroso compounds). WHO Food Additive

series 50. Geneva: World Health Organization. Available at

http://www.inchem.org/documents/jecfa/jecmono/ v50je06.htm.

Fernández, A. M. C., & Jiménez, M. R. (2012). Toxicología alimentaria. Ediciones Díaz de Santos.

Yoon, J. H., Thompson, L. U., & Jenkins, D. J. (1983). The effect of phytic acid on in vitro rate of

starch digestibility and blood glucose response. The American journal of clinical nutrition, 38(6), 835-

Vucenik, I., & Shamsuddin, A. M. (2003). Cancer inhibition by inositol hexaphosphate (IP6) and

inositol: from laboratory to clinic. The Journal of nutrition, 133(11), 3778S-3784S.

Muzquiz, M., Pedrosa, M. M., Varela, E. A. J., Guillamón, E., Goyoaga, C., Cuadrado, C., & Burbano,

C. (2006). Factores no-nutritivos en fuentes proteicas de origen vegetal. Su implicación en nutrición

y salud. Braz J Food Technol, 87-98.

Teutonico, R. A., & Knorr, D. (1985). Amaranth: composition, properties, and applications of a

rediscovered food crop. Food technology (Chicago), 39(4), 49-61.

Sharon, N., & Lis, H. (1995). Lectins--proteins with a sweet tooth: functions in cell

recognition. Essays in biochemistry, 30, 59-75.

Liener, I. E. (1994). Implications of antinutritional components in soybean foods. Critical Reviews in

Food Science & Nutrition, 34(1), 31-67.

Holasova, M., Fiedlerova, V., Smrcinova, H., Orsak, M., Lachman, J., & Vavreinova, S. (2002).

Buckwheat—the source of antioxidant activity in functional foods. Food research international, 35(2-

, 207-211.

Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: antioxidants and beyond. The

American journal of clinical nutrition, 81(1), 215S-217S.

Lee, L. S., Choi, E. J., Kim, C. H., Sung, J. M., Kim, Y. B., Seo, D. H., ... & Park, J. D. (2016).

Contribution of flavonoids to the antioxidant properties of common and tartary buckwheat. Journal of

Cereal Science, 68, 181-186.

Zieliński, H., & Kozłowska, H. (2000). Antioxidant activity and total phenolics in selected cereal

grains and their different morphological fractions. Journal of agricultural and food chemistry, 48(6),

-2016.

Zduńczyk, Z., Flis, M., Zieliński, H., Wróblewska, M., Antoszkiewicz, Z., & Juśkiewicz, J. (2006).

In vitro antioxidant activities of barley, husked oat, naked oat, triticale, and buckwheat wastes and

their influence on the growth and biomarkers of antioxidant status in rats. Journal of Agricultural and

Food Chemistry, 54(12), 4168-4175.

Sun, T., & Ho, C. T. (2005). Antioxidant activities of buckwheat extracts. Food chemistry, 90(4), 743-

Şensoy, Í., Rosen, R. T., Ho, C. T., & Karwe, M. V. (2006). Effect of processing on buckwheat

phenolics and antioxidant activity. Food Chemistry, 99(2), 388-393.

Sedej, I., Mandić, A., Sakač, M., Mišan, A., & Tumbas, V. (2010). Comparison of antioxidant

components and activity of buckwheat and wheat flours. Cereal Chemistry, 87(5), 387-392.

Lin, L. Y., Liu, H. M., Yu, Y. W., Lin, S. D., & Mau, J. L. (2009). Quality and antioxidant property

of buckwheat enhanced wheat bread. Food Chemistry, 112(4), 987-991.

Sedej, I., Sakač, M., Mandić, A., Mišan, A., Pestorić, M., Šimurina, O., & Čanadanović-Brunet, J.

(2011). Quality assessment of gluten-free crackers based on buckwheat flour. LWT-Food Science and

Technology, 44(3), 694-699.

Noroozi, M., Angerson, W. J., & Lean, M. E. (1998). Effects of flavonoids and vitamin C on oxidative

DNA damage to human lymphocytes. The American journal of clinical nutrition, 67(6), 1210-1218.

Przybylski, R., Lee, Y. C., & Eskin, N. A. M. (1998). Antioxidant and radical‐scavenging activities

of buckwheat seed components. Journal of the American Oil Chemists' Society, 75(11), 1595.

Cao, W., Chen, W. J., Suo, Z. R., & Yao, Y. P. (2008). Protective effects of ethanolic extracts of

buckwheat groats on DNA damage caused by hydroxyl radicals. Food Research International, 41(9),

-929.

Cao, J., Chen, W., Zhang, Y., Zhang, Y., & Zhao, X. (2010). Content of selected flavonoids in 100

edible vegetables and fruits. Food science and technology research, 16(5), 395-402.

Hertog, M. G. L., & Hollman, P. C. H. (1996). Potential health effects of the dietary flavonol

quercetin. European Journal of Clinical Nutrition (United Kingdom).

Pace-Asciak, C. R., Hahn, S., Diamandis, E. P., Soleas, G., & Goldberg, D. M. (1995). The red wine

phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis:

implications for protection against coronary heart disease. Clinica chimica acta, 235(2), 207-219.

Acic, D., Davidovic-Amic, D., Beslo, D., & Trinajstic, N. (2003). Structure-Radical scavenging

activity relationship of flavonoids. Croat. Chem. Acta, 76, 5561-5565.

Hirano, R., Sasamoto, W., Matsumoto, A., Itakura, H., Igarashi, O., & Kondo, K. (2001). Antioxidant

ability of various flavonoids against DPPH radicals and LDL oxidation. Journal of nutritional science

and vitaminology, 47(5), 357-362.

Chao, P. D. L., Hsiu, S. L., & Hou, Y. C. (2002). Flavonoids in herbs: biological fates and potential

interactions with xenobiotics. Journal of Food and Drug Analysis, 10 (4).

Fotsis, T., Pepper, M. S., Aktas, E., Breit, S., Rasku, S., Adlercreutz, H., & Schweigerer, L. (1997).

Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer

research, 57(14), 2916-2921.

Zhang, A. L., Liu, G. Q., Ma, Q., & Gao, J. M. (2001). Structure-activity relationship of

flavonoids. Journal-Northwest Forestry University, 16(2), 75-79.

Fabjan, N., Rode, J., Košir, I. J., Wang, Z., Zhang, Z., & Kreft, I. (2003). Tartary buckwheat

(Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. Journal of agricultural and

food chemistry, 51(22), 6452-6455.

Verardo, V., Arráez-Román, D., Segura-Carretero, A., Marconi, E., Fernandez-Gutierrez, A., &

Caboni, M. F. (2011). Determination of free and bound phenolic compounds in buckwheat spaghetti

by RP-HPLC-ESI-TOF-MS: Effect of thermal processing from farm to fork. Journal of Agricultural

and Food Chemistry, 59(14), 7700-7707.

Jiang, P., Burczynski, F., Campbell, C., Pierce, G., Austria, J. A., & Briggs, C. J. (2007). Rutin and

flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F.

homotropicum and their protective effects against lipid peroxidation. Food research

international, 40(3), 356-364.

Klimczak, I., Małecka, M., & Pachołek, B. (2002). Antioxidant activity of ethanolic extracts of

amaranth seeds. Food/Nahrung, 46(3), 184-186.

Velioglu, Y., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant activity and total phenolics in

selected fruits, vegetables, and grain products. Journal of agricultural and food chemistry, 46(10),

-4117.

Watanabe, M., Ohshita, Y., & Tsushida, T. (1997). Antioxidant compounds from buckwheat

(Fagopyrum esculentum Möench) hulls. Journal of Agricultural and Food Chemistry, 45(4), 1039-

Lin, L. Y., Liu, H. M., Yu, Y. W., Lin, S. D., & Mau, J. L. (2009). Quality and antioxidant property

of buckwheat enhanced wheat bread. Food Chemistry, 112(4), 987-991




DOI: http://dx.doi.org/10.52155/ijpsat.v29.1.3653

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Cristina Susana Barcia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.