Effects Of Molecular Markers Consequences On Genotyping Errors

Ashraf M. Ward, Miloud E Sweesi, Lutfi.L. Al-Mesilaty, Ali A. Ahmed, Abdelatef A. Aswehli, Abdulraouf M. Alkurdi, Giuma A. Elhafi, Ismail M. Hdud, Mohamed A. Benothman


Genotype error can greatly reduce the power of a genetic study. For family data, genotype error can be assessed by examining marker data for non-Mendelian inconsistencies, closely linked markers for double recombination events, and consistency of duplicate genotypes. Genetic markers are widely used to determine the parentage of individuals in studies of mating systems, reproductive success, dispersals, quantitative genetic parameters and in the management of conservation populations. These markers are, however, imperfect for parentage analyses because of the presence of genotyping errors and undetectable alleles, which may cause incompatible genotypes (mismatches) between parents and offspring and thus result in false exclusions of true parentage. Highly polymorphic markers widely used in parentage analyses, such as microsatellites, are especially prone to genotyping errors. Molecular markers based on a hybridization reaction or PCR stage that detect DNA polymorphism are currently used in various fields of biology, including the study and preservation of genetic diversity, identification of individuals, phylogenetic, mapping of useful traits of quality and resistance to stress factors. , in the breeding process, biotechnology, etc. Before starting the experiment, researchers must determine what type of markers to use based on the following criteria: the variability and number of required markers, the need for their codominance, the corresponding requirements for the extracted DNA; practical - efficiency, reproducibility of analysis, the necessary appropriate technical support and cost. For a correct interpretation of the results of genotyping, one should take into account the fact that the use of any type of molecular markers is associated with a number of genotyping errors, the main ones being the loss of larger alleles, “zero” alleles, “stutter” alleles due to the peculiarities of Tag polymerase, and non-homology of amplified sequences of the same size (homoplasia). Researchers formulate defining conditions to reduce genotyping errors and reduce their impact on the final analysis. These include the quality and quantity of analyzed DNA, the level of technical capabilities and professionalism of the staff, since the human factor is defined as one of the main reasons for incorrect results; conducting pilot experiments for a comparative assessment of the theoretical and real error rate. The minimization of errors is achieved by assessing the capabilities of a particular type and screening markers; optimization of experimental methods, proper use of controls, replicates, and development of statistical approaches to identify errors. The trade-off between culling error-generating loci and increasing the potential of the retained loci to amplify the genetic signal can be different in different studies, but the main thing is that this signal is not lost for the sake of an “acceptable” level of error and the researchers develop empirical approaches to achieve the desired compromise.so that this signal is not lost for the sake of an "acceptable" level of error and researchers develop empirical approaches to achieve the desired compromise.so that this signal is not lost for the sake of an "acceptable" level of error and researchers develop empirical approaches to achieve the desired compromise.


molecular, markers, genotyping, errors.

Full Text:



Ganal MW, Polley A., Graner EM, Plieske J., Wieseke R., Luerssen H., Durstewitz G. Large SNP arrays for genotyping in crop plants // J Biosci. - 2012. - Vol. 37. - P. 821-288.

2.Miedaner T., Korzun V. Marker-assisted selection for disease resistance in wheat and barley breeding // Phytopathology. - 2012. - Vol.102. - P. 560-566. Paux E., Sourdille P., Mackay I.,

Feuillet C. Sequence-based marker development in wheat: advances and applications to breeding // Biotechnol Adv. - 2001. - Vol. 30. - P. 1071-1088.

Hall D., Tegström C., Ingvarsson PK Using association mapping to dissect the genetic basis of complex traits in plants // Brief Funct Genomics. - 2010. - Vol. 9. - P. 157-165.

Zimmer EA, Wen J. Using nuclear gene data for plant phylogenetics: progress and prospects // Mol Phylogenet Evol. - 2012. - Vol. 65. - P. 774-785.

Kumar P., Gupta VK, Misra AK, Modi DR, Pandey BK Potential of Molecular Markers in Plant Biotechnology // Plant Omics Journal. - 2009. - Vol. 2. - P. 141-162.

Woodhead M., Russell J., Squirrell J., Hollingsworth PM, Mackenzie K., Gibb M., Powell W. Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions // Molecular Ecology. - 2005. - Vol. 14. - R. 1681-1695.

Kuczmog A., Galambos A., Horváth S., Mátai A., Kozma P., Szegedi E., Putnoky P. Mapping of crown gall resistance locus Rcg1 in grapevine // Theor Appl Genet. - 2012. - Vol.125. - P. 1565-1574.

Ujihara T, Taniguchi F, Tanaka J, Hayashi N. Development of Expressed Sequence Tag (EST) -based Cleaved Amplified Polymorphic Sequence (CAPS) markers of tea plant and their application to cultivar identification // J Agric Food Chem. - 2011. - Vol. 59. - P. 1557-1564.

Segatto ALA, Caze ALR, Turchetto C., Klahre U., Kuhlemeier C., Bonatto SL, Freitas LB Nuclear and plastid markers reveal the persistence of genetic identity: A newperspective on the evolutionary history of Petunia exserta // Molecular Phylogenetics and Evolution. - 2014. - Vol. 70. - P. 504-512.

Cui Y., Lee MY, Huo N., Bragg J., Yan L., Yuan C., Li C., Holditch SJ, Xie J., Luo MC, Li D., Yu J., Martin J., Schackwitz W., Gu YQ, Vogel JP, Jackson AO, Liu Z., Garvin DF Fine mapping of the Bsr1 barley stripe mosaic virus resistance gene in the model grass Brachypodium distachyon // PLoS One. - 2012. - Vol. 7: e38333.

Jo K.-R., Arens M., Kim T.-Y., Jongsma MA, Visser RGF, Jacobsen E., Vossen HJ Mapping of the S. demissum late blight resistance gene R8 to a new locus on chromosome IX // Theor Appl Genet. - 2011. - Vol. 123. - P. 1331-1340.

Shu QY, Liu GS, Qi DM, Chu CC, Liu. J, Li HJ An effective method for axillary bud culture and RAPD analysis of cloned plants in tetraploid black locust // Plant Cell Rep. - 2003. - Vol. 22 .-- P. 1751-1780.

Sreedhar RV, Venkatachalam L., Bhagyalakshmi N. Genetic fidelity of long-term micropropagated shoot cultures of vanilla (Vanilla planifolia Andrews) as assessed by molecular markers // Biotechnol. J. - 2007. - Vol. 2. - P. 1007-1013.

Rai GK, Singh M., Rai NP, Bhardwaj DR, Kumar S. In vitro propagation of spine gourd (Momordica dioica Roxb.) And assessment of genetic fidelity of micropropagated plants using RAPD analysis // Physiol Mol Biol Plants. - 2012. - Vol. 18. - P. 273-280.

Kim JK, An GH, Ahn SH, Moon YH, Cha YL, Bark ST, Choi YH, Suh SJ, Seo SG, Kim SH, Koo BC Development of SCAR marker for simultaneous identification of Miscanthus sacchariflorus, M. sinensis and M. x giganteus // Bioprocess Biosyst Eng. - 2012. - Vol.35. - P. 55-59.

Pankin AA, Khavkin EE Genome-specific SCAR markers help solve taxonomy issues: a case study with Sinapis arvensis (Brassiceae, Brassicaceae) // Am J Bot. - 2011. - Vol. 98: e54-7.

Ray T., Roy SC Genetic diversity of Amaranthus species from the Indo-Gangetic plains revealed by RAPD analysis leading to the development of ecotype-specific SCAR marker // J Hered. - 2009. - Vol. 100. - P. 338-347.

Osipova ES, Lysenko EA, Troitsky AV, Dolgikh YI, Shamina ZB, Gostimskii SA Analysis of SCAR marker nucleotide sequences in maize (Zea mays L.) somaclones // Plant Sci. - 2011. - Vol. 180. - P. 313-322.

Rahman M., Sun Z., McVetty PB, Li G. High throughput genome-specific and gene-specific molecular markers for erucic acid genes in Brassica napus (L.) for marker-assisted selection in plant breeding // Theor Appl Genet. - 2008. - Vol. 117. - P. 895-904.

Naeimi S., Kocsubé S., Antal Z., Okhovvat SM, Javan-Nikkhah M., Vágvölgyi C., Kredics L. Strain-specific SCAR markers for the detection of Trichoderma harzianum AS12-2, a biological control agent against Rhizoctonia solani , the causal agent of rice sheath blight // Acta Biol Hung. - 2011, Mar. - No. 62 (1). - R. 73-84.

Falush D., Stephens M., Pritchard JK Inference of population structure using multilocus genotype data: dominant markers and null alleles // Molecular Ecology Notes. - 2007. - Vol. 7. - P. 574-578.

Powel W., Machray GC, Provan J. Polymorphism revealed by simple sequence repeats // Trends Plant Sci. - 1996. - Vol. 1. - P. 215-222.

Chung AM, Staub JE, Chen JF Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation // Genome. - 2006. - Vol. 49.

Rajendrakumar P., Biswal AK, Balachandran SM, Srinivasarao K., Sundaram RM Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions // Bioinformatics. - 2007. - Vol. 23. - P.1-4.

Kalia RK Rai MK, Kalia S., Singh R., Dhawan AK Microsatellite markers: an overview of the recent progress in plants // Euphytica. - 2011. - Vol.177. - P.309–334

Hoffman JI, and Amos W. Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion // Molecular Ecology. - 2005. - Vol. 14. - P.599-612.

Varshney RK, Graner A., Sorrells ME Genic microsatellite markers in plants: features and applications // TRENDS in Biotechnology. - 2005. - Vol. 23. - P.48-55.

Ellis R., JM Burke. EST-SSRs as a resource for population genetic analyzes // Heredity. - 2007. - Vol. 99. - P.125-132.

Saunders IW, Brohede J., Hannan GN Estimating genotyping error rates from Mendelian errors in SNP array genotypes and their impact on inference // Genomics. - 2007. –Vol. 90. - P. 291-296.

Guichoux E., Lagache L., Wagner S., Chaumeil P., Le. Ger P., Lepais O., Lepoittevin C., Malausa E., Revardel E., Salin F., Petit RJ Current trends in microsatellite genotyping // Molecular Ecology Resources. - 2011. - Vol. 11. - P. 591-611.

Schulman AH, Flavell AJ, Ellis TH The application of LTR retrotransposons as molecular markers in plants // Methods in Molecular Biology. - 2004. - Vol. 260. - R.145-173.

Kalendar R., Antonius K., Smykal P., Schulman AH iPBS: a universal method for DNA Wngerprinting and retrotransposon isolation // Theor Appl Genet. - 2010. –121. - R. 1419-1430.

Castro I., D'Onofrio C., Martin JP, Ortiz JM, De Lorenzis G., Ferreira VO Pinto-Carnide. Effectiveness of AFLPs and Retrotransposon-Based Markers for the Identification of Portuguese Grapevine Cultivars and Clones Mol Biotechnol. - 2012. - Vol. 52. - P. 26–39.

Nakatsuka T., Yamada E., Saito M., Hikage T., Ushiku Y., Nishihara M. Construction of the first genetic linkage map of Japanese gentian (Gentianaceae) // BMC Genomics. - 2012. –Vol. 13. - P. 672.

Bonin A., Bellemain E., Bronken Eidesen P., Pompanon F., Brochmann C., Taberlet P. How to track and assess genotyping errors in population genetics studies // Mol Ecol. - 2004. - Vol. 13. - P.3261-3273.

Pompanon F., Bonin A., Bellemain E., Pierre Taberlet. Genotyping Errors: Causes, Consequences And Solutions. Genetics. - 2005. - Vol. 6. - P.847-859.

Morin PA, Leduc RG, Archer FI, Martien KK, Huebinger R., Bickham JW, Taylor BL Significant deviations from Hardy – Weinberg equilibrium caused by low levels of microsatellite genotyping errors // Molecular Ecology Resources. - 2009. - Vol. 9. - P.498-504.

Gordon D., Heath SC, Ott J. True pedigree errors more frequent than apparent errors for single nucleotide polymorphisms // Hum Hered. - 1999. - Vol.49. - P.65–70.

Gordon D., Finch SJ, Nothnagel M., Ott J. Power and sample size calculations for case – control genetic association tests when errors are present: application to single nucleotide polymorphisms // Human Heredity. - 2002. - Vol. 54. - P.22-33.

Sobel E., Papp JC, Lange K. Detection and integration of genotyping errors in statistical genetics Am. J. Hum. Genet. - 2002. - Vol. 270. - P.496-508.

Navidi W., Arnheim N., Waterman MS A multiple-Tubes Approach for Accurate genotyping of very Small DNA samples by using PCR: Statistical considerations // Am. J. Hum. Genet. - 1992. - Vol. 50. - P.347-359.

Ghosh, S. et al. Methods for precise sizing, automated binning of alleles, and reduction of error rates in large-scale genotyping using fluorescently labeled dinucleotide markers // Genome Res. - 1997. - Vol. 7. - P. 165-178.

Hosking L., Lumsden S., Lewis K., Yeo A., McCarthy L., Bansal A., Riley J., Purvis I., a Xu Ch-F. Detection of genotyping errors by Hardy – Weinberg equilibrium testing // European Journal of Human Genetics. - 2004. - Vol. 12. - P. 395-399.

Ewen KR, Bahlo M., Treloar SA, Levinson DF, Mowry B., Barlow JW, SJ Foote. Identification and Analysis of Error Types in High-Throughput Genotyping // Am. J. Hum. Genet. - 2000. - Vol. 67. - P.727-736.

Gomes I., Collins A., Lonjou C. et al. Hardy – Weinberg quality control. Annals of Human Genetics. - 1999. - Vol. 63. - P. 535-538.

Callen DF, Thompson AD, Shen Y., Phillips H., Richards Rl., Mulley JC, Sutherland GR Incidence and origin of 'null' alleles in the (AC) n microsatellite markers // Americun Jounrnl of Human genetics. - 1993. - Vol. 52. - P.922-927.

Pemberton JM, Slate J., Bancroftt 'DR, Barrett JA Nonamplifying alleles at microsatellite a caution for parentage and population loci: studies // Molecular Ecology. - 1995. - Vol. 4. - P.249-252.

Van Oosterhout C., Weetman D., Hutchinson WF Estimation and adjustment of microsatellite null alleles in nonequilibrium populations // Molecular Ecology Notes. - 2006. - Vol. 6. - P.255-256.

Chapuis M.-P., Estoup A. Microsatellite Null Alleles and Estimation of Population Differentiation // Mol. Biol. Evol. - 2007. - Vol. 24. - P.621–631.

Dewoody J., Nason JD, Hipkins VD Mitigating scoring errors in microsatellite data from wild populations // Molecular Ecology Notes. - 2006. - Vol. 6. - P.951–957.

Dakin EE, Avise JC Microsatellite null alleles in parentage analysis // Heredity. –2004. - Vol. 93. - P.504-509.

Rungi D., Berube Y., Zhang J., Ralph S., Ritland CE, Ellis B E., Douglas C., Bohlmann J., Ritland K. Robust simple sequence repeat markers for spruce (Picea spp.) From expressed sequence tags // Theor Appl Genet. –2004. - Vol. 109. - P.1283-1294.

Wake DB, Wake MH, Specht CD Homoplasy: From Detecting Pattern to Determining Process and Mechanism of Evolution // Science. - 2011. - Vol. 331. - P.1032-1035.

Estoup A., Jarne P., Cornuet J.-M. Homoplasy and mutation model at microsatellite loci and 55.their consequences for population genetics analysis // Molecular Ecology. - 2002. - Vol. 11. - P. 1591-1604.

O'hanlon PC, Peakall R. A Simple method for the detection of size homoplasy among amplified fragment length polymorphism fragments // Molecular Ecology. - 2000. - Vol.9. - P.815-816.

Vekemans X., Beauwens T., Lemaire M., Roldcn-Ruiz I. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size // Molecular Ecology. - 2002. - Vol. 11. - P.139-151.

Caballero A., Quesada H. Homoplasy and Distribution of AFLP Fragments: An Analysis In Silico of the Genome of Different Species // Mol. Biol. Evol. - 2010. - Vol. 27. - P.1139-1151.

Herrmann D., Poncet BN, Manel S., Rioux D., Gielly. L, Taberlet P. Gugerli F. Selection criteria for scoring amplified fragment length polymorphisms (AFLPs) positively affect the reliability of population genetic parameter estimates // Genome. - 2010. - Vol. 53. - P.302-310.

Whitlock R, Hipperson H, Mannarelli M.,. Butlin R .K, Burke T. An objective, rapid and reproducible method for scoring AFLP peak-height data that minimizes genotyping error // Molecular Ecology Resources. - 2008. - Vol. 8. - P.725-735.

Zhang H., Hare MP Identifying and reducing AFLP genotyping error: an example of tradeoffs when comparing population structure in broadcast spawning versus brooding oysters // Heredity. –2012. - Vol. 108. - P. 616-625.

DOI: http://dx.doi.org/10.52155/ijpsat.v26.2.3034


  • There are currently no refbacks.

Copyright (c) 2021 ASHRAF MOHAMED WARD

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.