Implementation Of Double-Windows-Blending To Evaluate Traumatic-Brain-Injury In CT Head Images
Abstract
Keywords
Full Text:
PDFReferences
D. Santos, M. Santos, A. Dias, and N. Pacheco Rocha, “Medical Imaging Data and Process Analysis in a Stroke Scenario,” Procedia Comput. Sci., vol. 177, pp. 363–370, 2020.
K. Kiser et al., “Prospective quantitative quality assurance and deformation estimation of MRI-CT image registration in simulation of head and neck radiotherapy patients,” Clin. Transl. Radiat. Oncol., vol. 18, pp. 120–127, 2019.
F. R. Verdun et al., “Dose and image quality characterisation of CT units,” Radiat. Prot. Dosimetry, vol. 90, no. 1–2, pp. 193–196, 2000.
C. Anam, F. Haryanto, R. Widita, and I. Arif, “New noise reduction method for reducing CT scan dose: Combining Wiener filtering and edge detection algorithm,” AIP Conf. Proc., vol. 1677, pp. 1–5, 2015.
C. Anam, T. Fujibuchi, W. S. Budi, F. Haryanto, and G. Dougherty, “An algorithm for automated modulation transfer function measurement using an edge of a PMMA phantom: Impact of field of view on spatial resolution of CT images,” J. Appl. Clin. Med. Phys., vol. 19, no. 6, pp. 244–252, 2018.
A. Fukuda, P. J. P. Lin, K. Matsubara, and T. Miyati, “Measurement of gantry rotation time in modern ct,” J. Appl. Clin. Med. Phys., vol. 15, no. 1, pp. 303–308, 2014.
M. Kraft, M. Ibrahim, M. Spector, R. Forghani, and A. Srinivasan, “Comparison of virtual monochromatic series, iodine overlay maps, and single energy CT equivalent images in head and neck cancer conspicuity,” Clin. Imaging, vol. 48, no. March 2017, pp. 26–31, 2018.
K. Rapoport et al., “The prognostic value of the Koret CT score in dogs following traumatic brain injury,” Vet. J., vol. 266, p. 105563, 2020.
E. Czeiter et al., “Blood biomarkers on admission in acute traumatic brain injury: Relations to severity, CT findings and care path in the CENTER-TBI study,” EBioMedicine, vol. 56, pp. 1–11, 2020.
M. Monteiro et al., “Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study,” Lancet Digit. Heal., vol. 2, no. 6, pp. e314–e322, 2020.
P. Jones et al., “Time to CT head in adult patients with suspected traumatic brain injury: Association with the ‘Shorter Stays in Emergency Departments’ health target in Aotearoa New Zealand,” Injury, vol. 49, no. 9, pp. 1680–1686, 2018.
H. Chawla, B. L. Sirohiwal, R. Yadav, M. Griwan, and P. K. Paliwal, “The reliability of CT scan in detecting extradural hemorrhage in traumatic head injuries,” J. Forensic Radiol. Imaging, vol. 1, no. 2, pp. 77–78, 2013.
A. Montoya-Filardi, F. Menor Serrano, R. Llorens Salvador, D. Veiga Canuto, J. Aragó Domingo, and J. C. Jurado Portero, “Linear skull fracture in infants after mild traumatic brain injury: influence of computed tomography in management,” Radiologia, vol. 62, no. 6, pp. 487–492, 2020.
W. A. Kalender, “X-ray computed tomography,” Physics in Medicine and Biology, vol. 51, no. 13. 2006.
T. Kimpe and T. Tuytschaever, “Increasing the number of gray shades in medical display systems - How much is enough?,” J. Digit. Imaging, vol. 20, no. 4, pp. 422–432, 2007.
R. Babbel, H. R. Harnsberger, B. Nelson, J. Sonkens, and S. Hunt, “Optimization of techniques in screening CT of the sinuses,” Am. J. Neuroradiol., vol. 12, no. 5, pp. 849–854, 1991.
C. Anam, F. Haryanto, R. Widita, I. Arif, and G. Dougherty, “Automated Calculation of Water-equivalent Diameter (DW) Based on AAPM Task Group 220,” J. Appl. Clin. Med. Phys., vol. 17, no. 4, pp. 320–333, 2016.
M. Karki et al., “CT window trainable neural network for improving intracranial hemorrhage detection by combining multiple settings,” Artif. Intell. Med., vol. 106, no. September 2019, p. 101850, 2020.
Y. Jiang, J. Liu, and H. Sheng, “Microprocessors and Microsystems High resolution image processing and CT perfusion imaging detection in patients with cerebral hemorrhage based on embedded system,” Microprocess. Microsyst., vol. 81, no. November 2020, p. 103700, 2021.
X. W. Wu, W. Q. Wang, J. M. Xu, and B. Liu, “Impact of different window settings on colon polyp measurements with CT virtual colonoscopy: A phantom study,” Clin. Imaging, vol. 35, no. 4, pp. 274–278, 2011.
A. M. Bach, D. M. Panicek, L. H. Schwartz, S. K. Herman, M. N. Ho, and R. A. Castellino, “CT bone window photography in patients with cancer,” Radiology, vol. 197, no. 3, pp. 849–852, 1995.
C. M. Costelloe et al., “Bone windows for distinguishing malignant from benign primary bone tumors on FDG PET/CT,” J. Cancer, vol. 4, no. 7, pp. 524–530, 2013.
S. M. Pomerantz et al., “Liver and bone window settings for soft-copy interpretation of chest and abdominal CT,” Am. J. Roentgenol., vol. 174, no. 2, pp. 311–314, 2000.
Z. Xue, S. Antani, L. R. Long, D. Demner-Fushman, and G. R. Thoma, “Window classification of brain CT images in biomedical articles.,” AMIA Annu. Symp. Proc., vol. 2012, pp. 1023–1029, 2012.
S. M. Pizer, J. B. Zimmerman, and E. V. Staab, “Adaptive grey level assignment in CT scan display,” J. Comput. Assist. Tomogr., vol. 8, no. 2, pp. 300–305, 1984.
J. L. Lehr and P. Capek, “Histogram equalization of CT images,” Radiology, vol. 154, no. 1, pp. 163–169, 1985.
S. M. Pizer et al., “Adaptive Histogram Equalization and Its Variations.,” Comput. vision, Graph. image Process., vol. 39, no. 3, pp. 355–368, 1987.
L. F. and A. L. Yinpeng Jina, “Contrast Enhancement by Multi-scale Adaptive Histogram Equalization,” vol. 4478, pp. 206–213, 2001.
L. M. Fayad et al., “Chest CT window settings with multiscale adaptive histogram equalization: Pilot study,” Radiology, vol. 223, no. 3, pp. 845–852, 2002.
J. C. Mandell et al., “Clinical Applications of a CT Window Blending Algorithm: RADIO (Relative Attenuation-Dependent Image Overlay),” J. Digit. Imaging, vol. 30, no. 3, pp. 358–368, 2017.
N. Miskin, M. Travis Caton, J. P. Guenette, and J. C. Mandell, “Computed tomography window blending in maxillofacial imaging,” Emerg. Radiol., vol. 27, no. 1, pp. 57–62, 2019.
C. Anam, W. S. Budi, F. Haryanto, T. Fujibuchi, and G. Dougherty, “A novel multiple-windows blending of CT images in red-green-blue (RGB) color space: Phantoms study,” Sci. Vis., vol. 11, no. 5, pp. 56–69, 2019.
DOI: http://dx.doi.org/10.52155/ijpsat.v24.2.2581
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Wayan Santika Putra, Choirul Anam, Geoff Dougherty, Heryani Heryani, Desmalia Putri Ardiyanti

This work is licensed under a Creative Commons Attribution 4.0 International License.