Nanotechnology in Diagnosis and Treatment of Diabetes Mellitus: Review
Abstract
Customary techniques for diabetes management require steady and tedious glucose monitoring (GM) and insulin infusions, affecting quality of life. The worldwide diabetic population is required to increment to 439 million, with roughly US$490 billion in medical services consumptions by 2030, forcing a huge trouble on medical care systems around the world. Ongoing advances in nanotechnology have arisen as promising elective methodologies for the management of diabetes. For instance, implantable nano sensors are being created for nonstop GM, new nanoparticle (NP)- based imaging approaches that evaluate subtle changes in β cell mass can encourage early diagnosis, and nano technology-based insulin delivery strategies are being investigated as novel treatments. Here, we give an all-encompassing rundown of this quickly propelling field gathering all viewpoints relating to the management of diabetes.
Keywords
Full Text:
PDFReferences
- American Diabetes Association. (2019). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2019. Diabetes care, 42(Supplement 1), S13-S28.
- Shaw, J. E., Sicree, R. A., & Zimmet, P. Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes research and clinical practice, 87(1), 4-14.
- Karamanou, M., Protogerou, A., Tsoucalas, G., Androutsos, G., & Poulakou-Rebelakou, E. (2016). Milestones in the history of diabetes mellitus: The main contributors. World journal of diabetes, 7(1), 1.
- Dabelea, D. (2009). The accelerating epidemic of childhood diabetes. Lancet (London, England), 373(9680), 1999-2000.
- Lieberman, S. M., & DiLorenzo, T. P. (2003). A comprehensive guide to antibody and T‐cell responses in type 1 diabetes. Tissue antigens, 62(5), 359-377.
- Donath, M. Y., & Shoelson, S. E. (2011). Type 2 diabetes as an inflammatory disease. Nature Reviews Immunology, 11(2), 98-107.
- Care, D. (2019). 6. Glycemic targets: standards of medical care in diabetes—2019. Diabetes Care, 42(Supplement 1), S61-70.
- Zitkus, B. S. (2014). Update on the American Diabetes Association standards of medical care. The Nurse Practitioner, 39(8), 22-32.
- Schulman, R., Moshier, E., Rho, L., Casey, M., Godbold, J., & Mechanick, J. (2014). Association of glycemic control parameters with clinical outcomes in chronic critical illness. Endocrine Practice, 20(9), 884-893.
- Streisand, R., & Monaghan, M. (2014). Young children with type 1 diabetes: challenges, research, and future directions. Current diabetes reports, 14(9), 520.
- Pickup, J. C. (2012). Insulin-pump therapy for type 1 diabetes mellitus. New England Journal of Medicine, 366(17), 1616-1624.
- Brown, S. A., Kovatchev, B. P., Raghinaru, D., Lum, J. W., Buckingham, B. A., Kudva, Y. C., ... & Dassau, E. (2019). Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. New England Journal of Medicine, 381(18), 1707-1717.
- Davis, M. E., Zuckerman, J. E., Choi, C. H. J., Seligson, D., Tolcher, A., Alabi, C. A., ... & Ribas, A. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 464(7291), 1067-1070.
- Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology, 2(12), 751-760.
- Kim, B. Y., Rutka, J. T., & Chan, W. C. (2010). Nanomedicine. New England Journal of Medicine, 363(25), 2434-2443.
- LaVan, D. A., Lynn, D. M., & Langer, R. (2002). Moving smaller in drug discovery and delivery. Nature Reviews Drug Discovery, 1(1), 77-84.
- Whitesides, G. M. (2003). The'right'size in nanobiotechnology. Nature biotechnology, 21(10), 1161-1165.
- Okur, M. E., Karantas, I. D., & Siafaka, P. I. (2017). Diabetes Mellitus: a review on pathophysiology, current status of oral pathophysiology, current status of oral medications and future perspectives. ACTA Pharmaceutica Sciencia, 55(1).
- Mayorov, A. Y. E. (2011). Insulin resistance in pathogenesis of type 2 diabetes mellitus. Diabetes mellitus, 14(1), 35-45.
- Ojha, A., Ojha, U., Mohammed, R., Chandrashekar, A., & Ojha, H. (2019). Current perspective on the role of insulin and glucagon in the pathogenesis and treatment of type 2 diabetes mellitus. Clinical Pharmacology: Advances and Applications, 11, 57.
- Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology, 2(12), 751-760.
- Kim, B. Y., Rutka, J. T., & Chan, W. C. (2010). Nanomedicine. New England Journal of Medicine, 363(25), 2434-2443.
- Hieronymus, L., & Griffin, S. (2015). Role of amylin in type 1 and type 2 diabetes. The Diabetes Educator, 41(1_suppl), 47S-56S.
- Stringer, D. M., Zahradka, P., & Taylor, C. G. (2015). Glucose transporters: cellular links to hyperglycemia in insulin resistance and diabetes. Nutrition Reviews, 73(3), 140-154.
- Rang, H. P., Dale, M. M., Ritter, J. M., & Moore, P. K. (2003). Pharmacology, 5th edn. Churchill Livingstone. Edinburgh, Scotland.
- Streisand, R., & Monaghan, M. (2014). Young children with type 1 diabetes: challenges, research, and future directions. Current diabetes reports, 14(9), 520.
- Olokoba, A. B., Obateru, O. A., & Olokoba, L. B. (2012). Type 2 diabetes mellitus: a review of current trends. Oman medical journal, 27(4), 269.
- Khazrai, Y. M., Defeudis, G., & Pozzilli, P. (2014). Effect of diet on type 2 diabetes mellitus: a review. Diabetes/metabolism research and reviews, 30(S1), 24-33.
- Yokono, M., Takasu, T., Hayashizaki, Y., Mitsuoka, K., Kihara, R., Muramatsu, Y., ... & Tomiyama, H. (2014). SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats. European journal of pharmacology, 727, 66-74.
- Boles, A., Kandimalla, R., & Reddy, P. H. (2017). Dynamics of diabetes and obesity: epidemiological perspective. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(5), 1026-1036.
- Gambineri, A., Patton, L., Altieri, P., Pagotto, U., Pizzi, C., Manzoli, L., & Pasquali, R. (2012). Polycystic ovary syndrome is a risk factor for type 2 diabetes: results from a long-term prospective study. Diabetes, 61(9), 2369-2374.
- Papatheodorou, K., Banach, M., Bekiari, E., Rizzo, M., & Edmonds, M. (2018). Complications of diabetes 2017.
- K. Akhalya, S. Sreelatha, Rajeshwari, K. Shruthi, A review article- gestational
diabetes mellitus, Endocrinol. Metab. Int. J. 7 (2019) 26–39
- Dirar, A. M., & Doupis, J. (2017). Gestational diabetes from A to Z. World journal of diabetes, 8(12), 489.
- Diabetes Control and Complications Trial Research Group. (1995). Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Ophthalmology, 102(4), 647-661.
- Evans, M. (1998). The UK prospective diabetes study. The Lancet, 352(9144), 1932-1933.
- Andralojc, K., Srinivas, M., Brom, M., Joosten, L., De Vries, I. J. M., Eizirik, D. L., ... & Gotthardt, M. (2012). Obstacles on the way to the clinical visualisation of beta cells: looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis. Diabetologia, 55(5), 1247-1257.
- Veiseh, O., Gunn, J. W., & Zhang, M. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced drug delivery reviews, 62(3), 284-304.
- Dallo, F. J., & Weller, S. C. (2003). Effectiveness of diabetes mellitus screening recommendations. Proceedings of the National Academy of Sciences, 100(18), 10574-10579.
- Regnell, S. E., & Lernmark, Å. (2017). Early prediction of autoimmune (type 1) diabetes. Diabetologia, 60(8), 1370-1381.
- American Diabetes Association. (2019). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2019. Diabetes care, 42(Supplement 1), S13-S28.
- Care, D. (2019). 6. Glycemic targets: standards of medical care in diabetes—2019. Diabetes Care, 42(Supplement 1), S61-70.
- Schulman, R., Moshier, E., Rho, L., Casey, M., Godbold, J., & Mechanick, J. (2014). Association of glycemic control parameters with clinical outcomes in chronic critical illness. Endocrine Practice, 20(9), 884-893.
- Edelman, S. V., Argento, N. B., Pettus, J., & Hirsch, I. B. (2018). Clinical implications of real-time and intermittently scanned continuous glucose monitoring. Diabetes Care, 41(11), 2265-2274.
- Hovorka, R., Nodale, M., Haidar, A., & Wilinska, M. E. (2013). Assessing performance of closed-loop insulin delivery systems by continuous glucose monitoring: drawbacks and way forward. Diabetes technology & therapeutics, 15(1), 4-12.
- Schmid, C., Haug, C., Heinemann, L., & Freckmann, G. (2013). System accuracy of blood glucose monitoring systems: impact of use by patients and ambient conditions. Diabetes technology & therapeutics, 15(10), 889-896.
- Liao, K. C., Hogen-Esch, T., Richmond, F. J., Marcu, L., Clifton, W., & Loeb, G. E. (2008). Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo. Biosensors and Bioelectronics, 23(10), 1458-1465.
- Barone, P. W., & Strano, M. S. (2009). Single walled carbon nanotubes as reporters for the optical detection of glucose.
- Balaconis, M. K., Billingsley, K., Dubach, J. M., Cash, K. J., & Clark, H. A. (2011). The design and development of fluorescent nano-optodes for in vivo glucose monitoring. Journal of diabetes science and technology, 5(1), 68-75.
- Schultz, J. S., Mansouri, S., & Goldstein, I. J. (1982). Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites. Diabetes Care, 5(3), 245-253.
- Klonoff, D. C. (2012). Overview of fluorescence glucose sensing: a technology with a bright future.
- Du, L., Li, Z., Yao, J., Wen, G., Dong, C., & Li, H. W. (2019). Enzyme free glucose sensing by amino-functionalized silicon quantum dot. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 216, 303-309.
- Pørksen, N., Nyholm, B., Veldhuis, J. D., Butler, P. C., & Schmitz, O. (1997). In humans at least 75% of insulin secretion arises from punctuated insulin secretory bursts. American Journal of Physiology-Endocrinology and Metabolism, 273(5), E908-E914.
- Qian, W. J., Peters, J. L., Dahlgren, G. M., Gee, K. R., & Kennedy, R. T. (2004). Simultaneous monitoring of Zn2+ secretion and intracellular Ca2+ from islets and islet cells by fluorescence microscopy. Biotechniques, 37(6), 922-933.
- American Diabetes Association. (2019). 7. Diabetes technology: standards of medical care in diabetes—2019. Diabetes Care, 42(Supplement 1), S71-S80.
- Snider, R. M., Ciobanu, M., Rue, A. E., & Cliffel, D. E. (2008). A multiwalled carbon nanotube/dihydropyran composite film electrode for insulin detection in a microphysiometer chamber. Analytica chimica acta, 609(1), 44-52.
- Meetoo, D., & Lappin, M. (2009). Nanotechnology and the future of diabetes management. Journal of Diabetes Nursing, 13(8), 288-297.
- Ebrahimiasl, S., Fathi, E., & Ahmad, M. (2018). Electrochemical detection of insulin in blood serum using Ppy/GF nanocomposite modified pencil graphite electrode. Nanomedicine Research Journal, 3(4), 219-228.
- Amulya, C. et al. (2019) A review on alternative routes for insulin
administration. World J. Pharm. Res. 8, 1471–1479
- Rodbard, H. W., & Rodbard, D. (2020). Biosynthetic human insulin and insulin analogs. American Journal of Therapeutics, 27(1), e42-e51.
- McCrimmon, R. J., & Frier, B. M. (1994). Hypoglycaemia, the most feared complication of insulin therapy. Diabete et metabolisme, 20(6), 503-512.
- Johnson‐Rabbett, B., & Seaquist, E. R. (2019). Hypoglycemia in diabetes: The dark side of diabetes treatment. A patient‐centered review. Journal of diabetes, 11(9), 711-718.
- Brownlee, M., & Cerami, A. (1979). A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science, 206(4423), 1190-1191.
- Pegoraro, C., MacNeil, S., & Battaglia, G. (2012). Transdermal drug delivery: from micro to nano. Nanoscale, 4(6), 1881-1894.
- Ensign, L. M., Cone, R., & Hanes, J. (2012). Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Advanced drug delivery reviews, 64(6), 557-570.
- Yu, J., Zhang, Y., Ye, Y., DiSanto, R., Sun, W., Ranson, D., ... & Gu, Z. (2015). Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences, 112(27), 8260-8265.
- Schoellhammer, C. M., Blankschtein, D., & Langer, R. (2014). Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert opinion on drug delivery, 11(3), 393-407.
- Hang, T., Xiao, S., Yang, C., Li, X., Guo, C., He, G., ... & Deng, S. (2019). Hierarchical graphene/nanorods-based H2O2 electrochemical sensor with self-cleaning and anti-biofouling properties. Sensors and Actuators B: Chemical, 289, 15-23.
- Archana, S., & Sundaramoorthy, B. (2019). Review on biofouling prevention using nanotechnology. J. Entomol. Zool. Stud., 7, 640-648.
- Gu, Z., Aimetti, A. A., Wang, Q., Dang, T. T., Zhang, Y., Veiseh, O., ... & Anderson, D. G. (2013). Injectable nano-network for glucose-mediated insulin delivery. ACS nano, 7(5), 4194-4201.
- Li, C., Liu, X., Liu, Y., Huang, F., Wu, G., Liu, Y., ... & An, Y. (2019). Glucose and H 2 O 2 dual-sensitive nanogels for enhanced glucose-responsive insulin delivery. Nanoscale, 11(18), 9163-9175.
- Habener, J. F. (2004). A perspective on pancreatic stem/progenitor cells. Pediatric Diabetes, 5, 29-37.
- Shapiro, A. M. J., Lakey, J. R., Paty, B. W., Senior, P. A., Bigam, D. L., & Ryan, E. A. (2005). Strategic opportunities in clinical islet transplantation. Transplantation, 79(10), 1304-1307.
- Enderami, S. E., Mortazavi, Y., Soleimani, M., Nadri, S., Biglari, A., & Mansour, R. N. (2017). Generation of insulin‐producing cells from human‐induced pluripotent stem cells using a stepwise differentiation protocol optimized with platelet‐rich plasma. Journal of cellular physiology, 232(10), 2878-2886.
- Abazari, M. F., Soleimanifar, F., Aleagha, M. N., Torabinejad, S., Nasiri, N., Khamisipour, G., ... & Hashemi, J. (2018). PCL/PVA nanofibrous scaffold improve insulin-producing cells generation from human induced pluripotent stem cells. Gene, 671, 50-57.
- Mansour, R. N., Soleimanifar, F., Abazari, M. F., Torabinejad, S., Ardeshirylajimi, A., Ghoraeian, P., ... & Enderami, S. E. (2018). Collagen coated electrospun polyethersulfon nanofibers improved insulin producing cells differentiation potential of human induced pluripotent stem cells. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup3), S734-S739.
- Enderami, S. E., Kehtari, M., Abazari, M. F., Ghoraeian, P., Nouri Aleagha, M., Soleimanifar, F., ... & Askari, H. (2018). Generation of insulin-producing cells from human induced pluripotent stem cells on PLLA/PVA nanofiber scaffold. Artificial cells, nanomedicine, and biotechnology, 46(sup1), 1062-1069.
- de Vos, P., Faas, M. M., Strand, B., & Calafiore, R. (2006). Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials, 27(32), 5603-5617.
- Vegas, A. J., Veiseh, O., Doloff, J. C., Ma, M., Tam, H. H., Bratlie, K., ... & Fenton, P. (2016). Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nature biotechnology, 34(3), 345-352.
- Lou, S., Zhang, X., Zhang, J., Deng, J., Kong, D., & Li, C. (2017). Pancreatic islet surface bioengineering with a heparin-incorporated starPEG nanofilm. Materials Science and Engineering: C, 78, 24-31.
- Song, S., Faleo, G., Yeung, R., Kant, R., Posselt, A. M., Desai, T. A., ... & Roy, S. (2016). Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport. Scientific reports, 6(1), 1-9.
- Yang, J., Jiang, S., Guan, Y., Deng, J., Lou, S., Feng, D., ... & Li, C. (2019). Pancreatic islet surface engineering with a starPEG-chondroitin sulfate nanocoating. Biomaterials science, 7(6), 2308-2316.
- Wang, T. (2018). Successful diabetes management without immunosuppressivedrugs in NHP model has been demonstrated. Encapsulation system with taperednanopore conduits achieved normal glycaemia with regulated insulin release. Artificial cells, nanomedicine, and biotechnology, 46(sup3), S1162-S1168.
- Havel, H., Finch, G., Strode, P., Wolfgang, M., Zale, S., Bobe, I., ... & Liu, M. (2016). Nanomedicines: from bench to bedside and beyond. The AAPS journal, 18(6), 1373-1378.
- Xiao, X., Guo, P., Shiota, C., Zhang, T., Coudriet, G. M., Fischbach, S., ... & Piganelli, J. D. (2018). Endogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetes. Cell stem cell, 22(1), 78-90.
- Whitehead, K. A., Langer, R., & Anderson, D. G. (2009). Knocking down barriers: advances in siRNA delivery. Nature reviews Drug discovery, 8(2), 129-138.
- Gallego-Perez, D., Pal, D., Ghatak, S., Malkoc, V., Higuita-Castro, N., Gnyawali, S., ... & Singh, K. (2017). Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. Nature nanotechnology, 12(10), 974-979.
- Gallego-Perez, D., Otero, J. J., Czeisler, C., Ma, J., Ortiz, C., Gygli, P., ... & Ghatak, S. (2016). Deterministic transfection drives efficient nonviral reprogramming and uncovers reprogramming barriers. Nanomedicine: Nanotechnology, Biology and Medicine, 12(2), 399-409.
DOI: http://dx.doi.org/10.52155/ijpsat.v24.1.2576
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Maged Naser, Mohamed M.Nasr, Lamia H. Shehata Lamia H. Shehata
This work is licensed under a Creative Commons Attribution 4.0 International License.