Comparative Theoretical Study on the Electronic Structures of the Isolated Molecular Gyroscopes with Polar and Nonpolar Phenylene Rotator
Abstract
Over the past decade, an assembly of the molecular components that produces quasi-mechanical movements in response to specific stimuli has become an intriguing research area. Interestingly, a rationally designed and strategically synthesized macroscopic gyroscope like molecular model with a closed topology has already demonstrated such remarkable behavior of the molecular machine. As its representative examples, the chemically synthesized siloxaalkane molecular gyroscopes (SMGs) with polar (e.g. ROT-2F and ROT-2Cl) and nonpolar (e.g. ROT-2H) rotating units (rotators) are considered here, and investigated their ground state electronic structures theoretically under non-crystalline condition by using density functional theory (DFT) model. We found this theoretical model has semiquantitatively reproduced one or more X-ray observed equilibrium structures of all the three SMGs. While comparing their DFT derived structures, the siloxaalkane spokes of the ROT-2F and ROT-2Cl are found to be deformed significantly as in experimental results, and this structural deformation is reconfirmed here by the DFT computed values of the “free volume” units present around each central rotator. The present DFT findings can be used to check whether its calculations are qualitatively agreed to the DFTB (Density Functional based Tight Binding) so that one can access the latter method directly while predicting reliable crystal structures and rotational dynamics of these SMGs under crystalline condition. This insight not only emphasizes the importance of molecular topology but also stresses the necessity of creating "free volume" unit around the central rotator to exhibit gyroscopic functions smoothly.
Keywords
Full Text:
PDFReferences
V. Balzani, M. Venturi and A. Credi, Molecular Devices and machines: A Journey into the Nano World (Wiley-VCH: Weinheim, 2003).
T. R. Kelley, Molecular Machines. Topics in Current Chemistry (Springer, 2005).
Z. Dominguez, H. Dang, M. J. Strouse and M. A. Garcia-Garibay, J. Am. Chem. Soc. 124, 7719 (2002).
M. A. Garcia-Garibay and C. E. Godinez, Cryst. Growth Des. 9, 3124 (2009).
R. D. Horansky, L. I. Clarke, J. C. Price, T. V. Khuong, P. D. Jarowski and M. A. Garcia-Garibay, Phys. Rev. B 72, 014302 (2005).
R. D. Horansky, L. I. Clarke, J. C. Price, S. D. Karlen, P. D. Jarowski, R. Santillan and M. A. Garcia-Garibay, Phys. Rev. B 74, 054306 (2006).
Z. J. O’Brien, A. Natarajan, S. Khan and M. A. Garcia-Garibay, Cryst. Growth Des. 11, 2654 (2011).
W. Setaka, S. Ohmizu, C. Kabuto and M. Kira, Chem. Lett. 36, 1076 (2007).
W. Setaka, S. Ohmizu and M. Kira, Chem. Lett. 39, 468 (2010).
W. Setaka and K. Yamaguchi, Proc. Natl. Acad. Sci. 109, 9271 (2012).
A. V. Akimov and A. J. Kolomeisky, J. Phys. Chem. C 115, 13584 (2011).
J. Michl and E. C. H. Sykes, Am. Chem. Soc. Nano. 3, 1042 (2009).
M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
B. B. Yehuda and Y. Avishai, Quantum Mechanics with Applications to Nanotechnology and Information Science (ScienceDirect, 2013).
J. B. Adams, Encyclopedia of Materials: Science and Technology (Elsevier, 2001).
A. B. Marahatta, Int. J. Prog. Sc. Tech. 16 (1), 51 (2019).
A. B. Marahatta, Int. J. Prog. Sc. Tech. 16 (2), 01 (2019).
A. B. Marahatta, Int. J. Prog. Sc. Tech. 17 (1), 55 (2019).
A. B. Marahatta, Int. J. Prog. Sc. Tech. 18 (2), 43 (2020).
A. B. Marahatta, Int. J. Prog. Sc. Tech. 19 (1), 100 (2020).
A. B. Marahatta, Int. J. Prog. Sc. Tech. 19 (2), 48 (2020).
A. J. Cohen, P. M. Sánchez and W. Yang, Science 321, 792 (2008).
A. D. Buckingham, P. W. Fowler and J. M. Hudson, Chem. Rev. 88 (6), 963 (1988).
J. Tao, J. P. Perdew and A. Ruzsinszky, Proc. Natl. Acad. Sci. U. S. A. 109 (1), 18 (2012).
A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys. Rev. Lett. 91, 146401-1 (2003).
V. Mourik, T. Gdanitz and J. Robert, J. Chem. Phy. 116 (22), 9620 (2002).
J. Vondrášek, L. Bendová, and V. Klusák, J. Am. Chem. Soc. 127 (8), 2615 (2005).
Gaussian 09 manual. http://gaussian.com/geom/?tabid=1#GeomkeywordReadOptimizeoption
J. B. Foresman and Æ Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian, Inc., 2015).
Æ Frisch, Gaussian 09W Reference (Gaussian, Inc., 2009).
Æ. Frisch, H. P. Hratchian, R. D. Dennington II, T. A. Keith and J. Millam, Gauss view 05 Reference (Gaussian, Inc. 2009).
Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/
A. B. Marahatta, M. Kanno, K. Hoki, W. Setaka, S. Irle and H. Kono, J. Phys. Chem. C 116, 24845 (2012).
G. J. Richard and C. Julian, Silicon-Containing Polymers: The Science and Technology of Their Synthesis and Applications, pp.186-187, (Springer publication, 2000).
A. B. Marahatta and H. Kono, Int. J. Inn. Res. Adv. Stud. 6,180 (2019).
A. B. Marahatta and H. Kono, Int. J. Prog. Sc. Tech. 15(2), 263 (2019).
DOI: http://dx.doi.org/10.52155/ijpsat.v20.1.1716
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Anant Babu Marahatta
This work is licensed under a Creative Commons Attribution 4.0 International License.