A DFT Study of Electronic Structures on Hydrated Sulfate Clusters [SO42−(H2O)n] n = 0−4, 16

Anant Babu Marahatta

Abstract


Micro-hydrated Hofmeister ions have always become the center of research interest while studying the influence of hydration on geometries of hetero-atom centered ions by both experimental and theoretical techniques. The inorganic divalent sulfur-centered anion SO42− is one of such ions that is ranked first among the anions in Hofmeister series. Being this anion as a major component in many electrolytic solutions and sea water as well as in biosynthesis of active sulfate and in laxatives drugs, understanding how an isolated SO42− undergoes solvation and structural stabilization electronically is indispensable. This study is aimed to probe deep into the molecular-level of the SO42− ion hydration by applying ab initio type theoretical calculations. It is found that whenever the solvent number n = 1 to 4 H2O, the SO42− attracts H2O strongly enough that two H−bonds are formed with each H2O, and when n > 4 H2O (in this case, [SO42−(H2O)16]), the SO42− forms single H−bond with H2O that is further bonded to another H2O by H−bonds. Interestingly, no significant geometric distortion of the central SO42− ion is observed in its hydrated form. It is believed that this computational study will not only ease to learn most of the physicochemical properties of SO42ions in any inorganic sulfate solutions (including in human body fluids), but also to model their hydrated systems while exploring solvation dynamics in bulk solutions.


Keywords


Hofmeister ions, Hydrated sulfate clusters, Electrostatic potential surface (ESP) map, and DFT optimization.

Full Text:

PDF

References


H. J. Bakker, M. F. Kropman and A. W. Omta, J. Physics: Cond. Matt. 17, S3215(2005).

R. Li, Z. Jiang, H. Yang and Y. Guan, J. Mol. Liq. 126, 14(2006).

C. D. Cappa, J. D. Smith, B. M. Messer, R. C. Cohen and R. J. Saykally, J. Phy. Chem. B 110, 5301(2006).

S. Ansell, A.C. Barnes, P.E. Mason, G. W. Neilson and S. Ramos, Biophy. Chem. 124, 171(2006).

M. Y. Kiriukhin, K. D. Collins, Biophy. Chem. 99,155(2002).

R. Daudel, Electronic Structure of Molecules (Elsevier, 1966).

Gaussian 09 manual. http://gaussian.com/geom/?tabid=1#GeomkeywordReadOptim izeoption

D. Timothy, S. K. Gregory, G. Mirza, B. D. Marcel, W. Jan, H. Jürg, et al. ChemRxiv. preprint (2018).

Z. Lou, H. Liu, Y. Zhang, Y. Meng, Q. Zeng, J. Shi and M. Yang, J. Theor. Comp. Chem. 13(04), 1450028(2014).

A. R. Bandy and J. C. Ianni, J. Phys. Chem. A 10(232), 6533(1998).

A. J. Cohen, P. M. Sánchez and W. Yang, Science 321(5890), 792(2008).

P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864(1964).

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133(1965).

R. D. Madan, Modern Inorganic Chemistry (S. Chand & Company, 1997).

L. C. Smeeton, J. D. Farrell, M. T. Oakley, D. J. Wales, and R. L. Johnston, J. Chem. Th. Comput. 115, 2377(2015).

Tanganov B. B., Eur. J. Nat. Hist. 1, 36(2013).

M. Jung, W. Lee, C. Noh, A. Konovalova, G. S. Yi, S. Kim, Y. Kwon and D. Henkensmeier, J. Mem. Sci. 580, 110(2019).

Food and Nutrition Board, Institute of Medicine of the National Academies, Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate, ch 7, p 424-434, (The national academic press, 2005).

Sodium Sulfate Functions in Daily Life–Formula –Uses. https://azchemistr y.com/sodium-sulfate-function

X. B. Wang, X. Yang, J. B. Nicholas and L. S. Wang, Science, 294,1322(2001).

S. A. Brandan, S. B. Diaz, R. C. Picot, E. A. Disalvo and A. B. Altabef, Spectrochim. Acta A 66, 1152(2006).

Æ. Frisch, H. P. Hratchian, R. D. Dennington II, T. A. Keith and J. Millam. Gauss view 5 Reference (Gaussian, Inc. 2009).

Gaussian 09 manual. http://gaussian.com/geom/?tabid=1#GeomkeywordReadOptim izeoption

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson and H. Nakatsuji, et al. Gaussian 09, Revision C.01, (Gaussian, Inc. 2004).

X. B. Wang, J. B. Nicholas and L. S. Wang, J. Chem. Phys. 113(24), 10837(2000).

V. Vchirawongkwin, B. M. Rode and I. Persson, J. Phys. Chem. B 111(16), 4150(2007).

Y. Wang, W. Zhu, K. Lin, L. Yuan, X. Zhou and S. Liua, J. Raman Spec. 47,1231(2016).

E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry (University Science Books, 2006).




DOI: http://dx.doi.org/10.52155/ijpsat.v17.1.1358

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Anant Babu Marahatta

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.