

Understanding The Risks And Rewards Of Uterine Transplantation. Review

Maged Naser ¹, Mohamed M. Nasr ², and Lamia H. Shehata ³

¹ Mazahmiya Hospital, Ministry of Health, Kingdom of Saudi Arabia, Department of ob/gyn

² Consultant of General and Endoscopic Surgery (MD, FRCS)

³ Care National Hospital, Department of Radiology

Corresponding Author : Maged Naser

Abstract: Uterus transplantation (UTx) studies have been delivered in several international locations, with trials in Sweden and the US generating successful consequences. The developing interest in developing UTx trials in different countries, consisting of Spain, the Netherlands, Japan, and Australia, raises essential questions concerning the ethics of surgical innovation research in the discipline of UTx. This paper examines the modern-day kingdom of UTx inside the context of the surgical innovation paradigm and perfect framework and discusses the ethical demanding situations faced by way of the ones considering the creation of recent trials. We argue that UTx remains an experimental technique at a notably early stage of the best framework, in particular in the context of de novo trials, where protocols are likely to deviate from those used previously and in which researchers are probably to have restrained revel in of UTx. We finish that international locations thinking about the creation of UTx trials should construct on the strengths of the said effects to consolidate the evidence base and shed mild on the uncertainties of the method. government answerable for the ethical governance of UTx trials are suggested to attract on the moral framework used in the oversight of surgical innovation.

Keywords: Uterus transplantation, Surgical innovation, scientific ethics, Vascular composite allografts, research ethics

I. Introduction

Uterus transplantation (UTx) is a potential remedy to restore reproductive function to female with absolute uterine aspect infertility (AIFI)[1]. An expected one in 5 hundred ladies of childbearing age lack a functional uterus (genetically or acquired) and might revel in AIFI [2,3]. In assessment to the transplantation of solid organs (e.g., heart, liver, lungs) and prefer many vascular composite allografts (VCA), UTx can be taken into consideration “lifestyles-enhancing” instead of “lifestyles-saving” [4,5,6]. It gives a few women with AIFI the possibility of experiencing gestation and childbirth [7], allowing them to create families that might no longer otherwise be viable [1,8,9]. Following the success of the primary trials led by Brännström and colleagues in Sweden, UTx programmes have been introduced in a number of nations during the last decade [10,11]. Many file developing popularity of UTx as a potential remedy for girls with AIFI [12,13,14,15,16]. As greater female are seeking for to undergo UTx, there's proof of increasing reputation of the method and a shift in ethical discourse about UTx to awareness on problems of knowledgeable consent from living donors (LD) and transplant recipients, and on fairness of get admission to to the method [1,2,17].. some commentators, but, argue that “UTx continues to be in its infancy” [18], noting that it stays an experimental manner [13,14,15,19] , and as such, have to be ruled by way of the present moral frameworks for surgical innovation (SI) [20,21]. developing interest in the improvement of UTx in international locations with established organ transplant systems, inclusive of Spain, Australia, Japan, and the Netherlands raises important questions regarding the ethical implications of new UTx trials and programmes [22, 23,24,25]. the popularity of UTx as a surgically progressive system has extensive implications for countries and clinician-researchers whilst designing and enforcing UTx trials. on this paper we explore

these implications and argue that moral scrutiny of proposed UTx trials is integral so as to shield individuals and to assist free and knowledgeable selection-making in a setting of sizable uncertainty and varying practices [16,26,27,28,29,30], specially, we highlight the want for worldwide cooperation to be able to facilitate consolidation of understanding and assist to help the responsible translation of new improvements within the field which includes using robot assisted surgery.

Table 1

Country (number of centres)	Number of cases in each country
United States (4)	40–45
Mexico (1)	<5
Brazil (2)	<5
Sweden (1)	20–25
Czech Republic (1)	5–10
Germany (1)	5–10
Belgium (1)	<5
France (1)	<5
Spain (1)	<5
Italy (1)	<5
Serbia (1)	<5
India (3)	10–15
Turkey (1)	<5
Lebanon (1)	<5
Saudi Arabia (1)	<5
China (2)	<5
South Korea (1)	<5
Singapore (1)	<5
Austr alia (2)	<5

1. A short history of UTx Trials

The primary stated case of human UTx was once finished in 2000 in Saudi Arabia, demonstrating partial fulfilment with graft survival of ninety-nine days [31]. given that that time, the milestones of achievement have advanced, with innovative achievements in graft survival and capability main sooner or later to the primary stay start following UTx from a dwelling donor

(LD), which was mentioned in Sweden in 2014 [4,32]. In earlier studies, the successful surgical fee has been defined as everyday menstruation through recipients following transplantation, with a fee of 78 consistent with cent within the Swedish trial from 9 transplants [32]. the biggest, nevertheless ongoing trial is the Dallas observe, which has reported twenty UTx, with twelve births from 11 mothers (birth charge in step with attempted Utx 55 in step with cent)[4,5,6,11,33]. as much as December 2021, the outcomes of sixty-2 UTx instances and twenty-four births had been published in scientific journals [10].

In short, at the same time as the collective revel in of UTx studies expands, steady improvements inside the area suggest that facts are not always cumulative. The merits of new trials should sometimes be evaluated besides the peace of mind that extra linear development on present foundations would possibly offer. that is specifically important to consider when evaluating the ability blessings and risks of proposed trials, as reported effects for previous trials may not always be applicable within the setting of latest innovations.

2. Challenges for nations and establishments considering the advent of UTx Trials

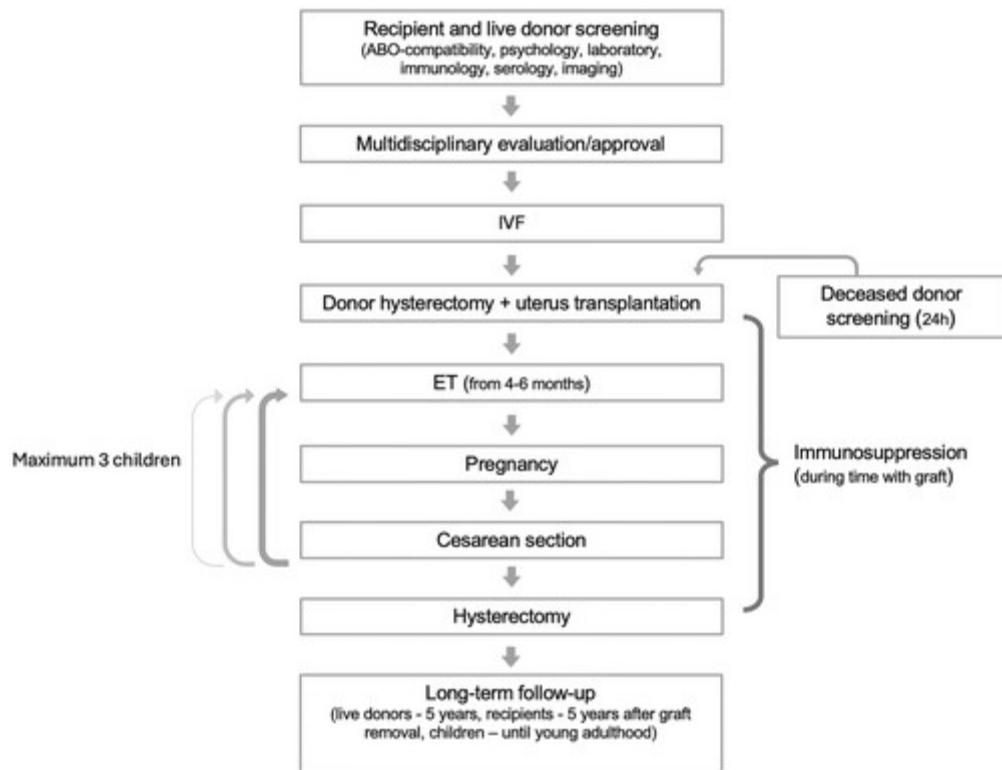
The style of cohorts, targets, and surgical approaches stated in the preceding section makes it hard to establish a strong evidence base for the efficacy and protection of UTx, although this is changing with developing experience in centres inside the u.s.a. and Europe (Bränström, Belfort, and Ayoubi 2021; Ricci)[10,34]. For countries and institutions thinking about implementing or taking part in a primary-in-u . s . a . UTx trial, it could therefore be challenging to get admission to and absolutely realize the to be had records from preceding studies in the area on account of the restricted range of cases suggested (often incompletely) and to the heterogeneity of processes and protocols used in the numerous research published considering the fact that 2000 [13,14,15,35].

Furthermore, the non-stop evolution of surgical and clinical processes has tremendous implications for the potential blessings and dangers that individuals in trials might also experience, and as a result for decision-making about the sketch of—and participation in—trials. As referred to above, clinician-researchers are actually refining surgical techniques and protocols for prevention of graft rejection at the same time as minimizing the effect of immunosuppression [4,10,12]. capability blessings and dangers can be strongly motivated through the know-how of the individuals and specifically composed teams involved. Many surgeons have constrained experience, as an example, with robot assisted surgical procedure that is related to a steep mastering curve [10,36] outcomes of UTx trials regarding robot surgical treatment may thus be particularly prompted through the level of experience within particular trial groups.

an additional mission is that facts from UTx trials may also be confined as a result of a reluctance to expose studies and case reviews with bad findings, and the issue in identifying statistics from contemporary trials because of a lack of systematic reporting of trials. to triumph over this, the international Society of Uterus Transplantation (ISUTx) has set up a registry designed to collect data related to transplant tactics and outcomes, that's nowadays in development [28]. Johannesson and co-workers from the U.S. Uterus Transplant Consortium have additionally currently published "suggestions for standardised nomenclature and reporting in UTx" that purpose to enhance the exceptional and cost of data to be had to tell oversight and decision-making about trials [4]. in the end, the recency of the sphere implies that there may be at present little information about long term results for trial members and babies created through UTx. Of the twenty-four stay births suggested after UTx, for instance, nineteen babies had been born pre-time period and nine experienced breathing misery syndrome, making longer comply with up necessary to assess any permanent sequelae that may be associated with precise protocols [10].

3. UTx patients

AUFI is identified in approximately 20 000 female of childbearing age within a populace of a hundred million, as predicted from United Kingdom records.[28] While the absence of a uterus is the maximum obvious motive of AUFI, a few women with a uterus this is dysfunctional and not able to sustain being pregnant also fall beneath this category. The maximum obvious cause of AUFI is anatomical absence of the uterus, with the maximum not unusual cause of uterine absence being hysterectomy. Cervical cancer is the leading malignancy-related reason for hysterectomy, with over 30% of instances recognized throughout reproductive age. [29] In pick instances with smaller cervical tumors , trachelectomy may be a fertility-sparing alternative. but, for patients



requiring radical hysterectomy without adjuvant radiation, UTx maybe taken into consideration. much less common uterine malignancies, which include endometrial cancer, leiomyosarcoma, and endometrial stromal sarcoma, [30] could also warrant publish-hysterectomy UTx, provided at the least five years have elapsed seeing that analysis. This precaution minimizes the danger of IS triggering dormant most cancers cells. Non-malignant reasons for hysterectomy at a young age are less common. Emergency peripartum hysterectomy happens in about 5 out of 10 000 deliveries,[31] with repeated cesarean transport being the predominant hazard component. [32] Large or a couple of leiomyomas in women of reproductive age also can necessitate hysterectomy after different remedies, which includes ablation and myomectomy, had been exhausted. round 2% of female aged 35 to 40 go through hysterectomy due to leiomyoma. [33] Congenital uterine absence, as in Mayer-Rokitansky-Okayüster-Hauser syndrome (MRKH), is every other purpose of anatomical absence of the uterus. MRKH syndrome, characterised through uterine aplasia in females with normal karyotype and secondary sex traits, has an occurrence of approximately 1 in 4500 ladies. [34] significantly, the remarkable majority of more than 140 uterus recipients global have MRKH syndrome, similar to the distribution of AUFI reasons in the authentic Swedish have a look at. 2 Some reasons of AUFI rise up from a uterus that is gift however dyspurposeful, besides any associated malformation. as an instance, leiomyomas are found in approximately 25% of IVF sufferers. [35] Submucous and large intramural fibroids can drastically reduce implantation potential and being pregnant effects. [36] at the same time as myomectomy or ablation can be effective, continual implantation failure may additionally cause consideration of hysterectomy followed by means of UTx. Intrauterine adhesions, usually brought on by endometritis or postpartum curettage, have a prevalence of approximately 1.5%. [37] Hysteroscopic resection re-stores fertility in about 70% of mild and 30% of intense cases. [38] Radiotherapy, whether or not neighbourhood pelvic or total frame irradiation, significantly reduces uterine extent and reasons infertility, sometimes leading to infertility and damaging pregnancy consequences. [39] UTx may be taken into consideration in those kinds of instances, however they should be considered high-danger UTx approaches, due to irreversible radiation changes to surrounding tissues, including the blood vessels. Congenital malformations result from disruptions within the development, formation, or fusion of the Müllerian ducts throughout fetal lifestyles. Those malformations have an effect on 5–7% of the general populace, with most no longer connected to infertility. forty however, in women with recurrent miscarriages, the superiority of partial uterine malformations is around 15%. [40] The maximum not unusual uterine malformation is septate uterus 40 and hysteroscopic resection successfully improves outcomes for infertility and recurrent pregnancy loss. [41] The bicornuate uterus represents 25% of uterine malformations. Spontaneous abortion rate amongst women with this malformation is round 35%, with limited gain from corrective surgical operation. [41,42] The unicornuate uterus and uterus didelphys account collectively for 20% of malformations. These conditions are associated with a 30% miscarriage fee and a live birthrate of around 50%. [41] The hypoplastic and T-shaped uterus are rare malformations with live birth fees beneath 10%. [41,42] The maximum severe congenital anomaly is MRKH syndrome, [34] where only rudimentary uterine tissue exists. In precis, both anatomical absence and functional impairment of the uterus on account of congenital, obtained, or radiation-induced causes can bring about AUFI. four BRÄNNSTRÖM et al.

4. Medical glide of UTx

The scientific waft of UTx is printed in determine 1. A meticulous screening method is carried out for the capacity recipient and her dedicated LD, observed by way of a comprehensive overview by a multidisciplinary team to confirm their suitability for UTx. In instances involving a DD, a rapid 24-h screening and assessment procedure is carried out, that is less detailed however still followed via approval manner. earlier than the UTx, in vitro fertilization (IVF) is completed to cryopreserve embryos, unfertilized oocytes, or both. To make sure an excessive chance of achieving at least one stay start, at the least 6–eight outstanding blastocysts or 20–25 unfertilized oocytes ought to be preserved. The surgical phase includes the donor hysterectomy (LD or DD) and the transplantation into the recipient. The recipient calls for IS remedy from the time of UTx until the uterus is eliminated. Embryo transfer (ET) can begin some months after UTx, and delivery is deliberate thru Caesarean section to keep away from stress on the transplanted uterus and vaginal anastomosis. If desired and medically viable, extra ETs can be conducted for up to 2 greater infants. Following childbirth, hysterectomy is per-fashioned to exclude the need for persevered IS. lengthy-term comply with-up is carried out for the LD, recipient, and child(ren).

Figure 1

5. kinds of UTx

UTx may be accomplished the use of a graft from either a LD or a DD, the latter regularly referred to as a multi-organ donor. Deceased donor UTx offers sizable advantages, consisting of disposing of surgical dangers for the donor and offering long vascular pedicles with large-diameter vessels, which simplify anastomosis. In evaluation, LD UTx allows access to an entire scientific record and enables thorough pre-surgical planning with a nicely-organized multidisciplinary crew. Surgical approaches range depending on the donor type. For DDs, hysterectomy is always accomplished through laparotomy. In LDs, hysterectomy can be done either thru laparotomy or robotic-assisted laparoscopy. no matter the form of donor, transplantation into the recipient is carried out via laparotomy. Overviews of the major components of those surgical techniques are supplied underneath.

5.1 Approach of open surgery

This hysterectomy is part of multi-organ restoration, consisting of thoracic and stomach organs. Dissection of the uterine vascular pedicle should be finished before retrieving indispensable organs to save you pro-longed heat ischemia. A full midline incision, with non-obligatory bilateral inguinal extensions, is used. parent two provides an outline of the positions for transecting the ureter and vascular pedicles. The internal iliac arteries are dissected distally, to about two cm proximally to the uterine artery-ureter crossing, where the ureters are transected. The round ligaments are divided, and a large bladder peritoneal flap is preserved. The ureters are similarly dissected at a role close to their entry points into the bladder and transected, keeping off harm to deep uterine veins that can curve closer to the bladder inside the space between the artery-ureter crossing and the bladder. Obliterated umbilical vessels are ligated round two cm from the branching of the uterine arteries. The internal iliac arteries and veins are dissected with ligations of branches, leaving solely the uterine vessels intact. The dis-section then makes a speciality of the parametrial tissue containing the uterine artery and 1-3 uterine veins, with venous branches divided and se-cured. The rectovaginal area is dissected, and the utero-sacral ligaments are transected. eventually, the external iliac arteries are exposed for later uterine flushing. After cross-clamping the aorta and vena F I G U R E 1 waft chart of a uterustransplantation method 5 of

10BRÄNNSTRÖM et al.cava, traditional organs are flushed and eliminated. The uterus is then flushed through catheters inserted into the outside iliac arteries, directing go with the flow thru the inner iliac arteries and into the uterine arteries. The vagina is transacted round 2 cm from the fornix, and the inner iliac vessels are clamped and transacted to optimize segments for anastomosis. The utero-ovarian veins also are harvested, and the uterus is eliminated. at the lower back-table, the ovaries and Oviducts are bilaterally excised after ligations. The brought period for preparation of the uterine graft and flushing is predicted to one–two h.

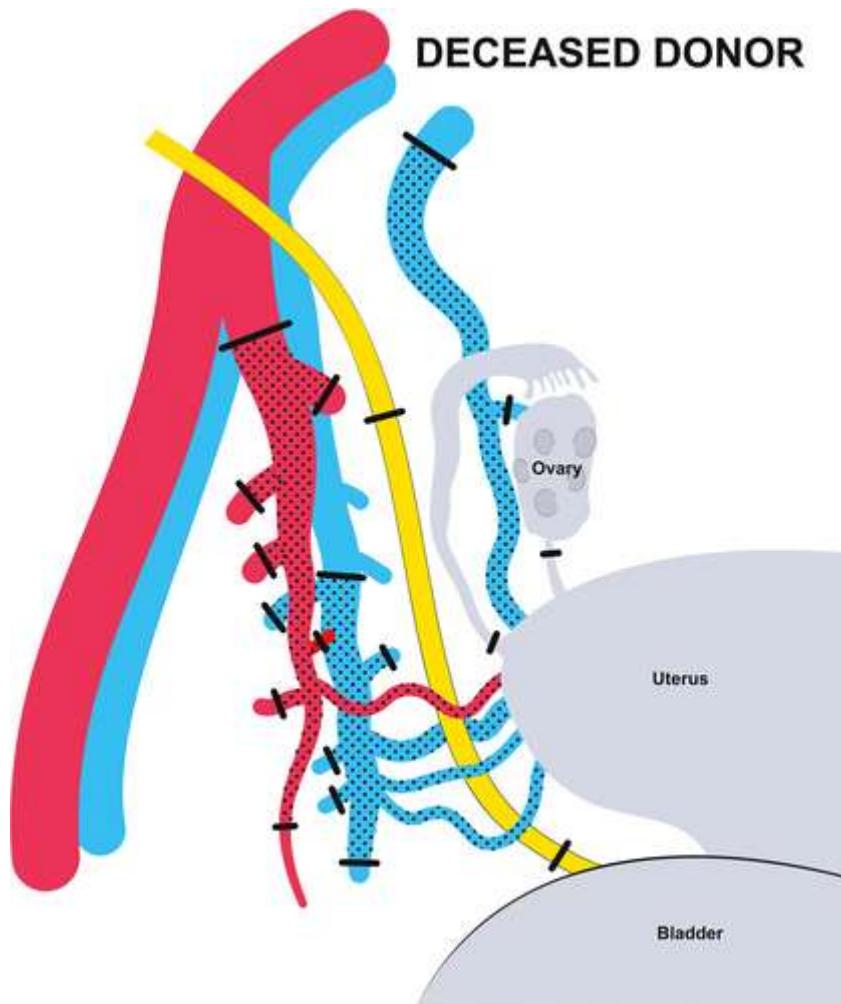


Figure2

Schematic illustration of the left side of the pelvis of a deceased donor, highlighting the major veins, arteries, and ureter. The transection sites for vessels and the ureter are indicated with black lines. The vascular pedicles connected to the uterus at the time of removal from the deceased donor are represented by dotted vessels.

5.2 LD hysterectomy method of open surgery

The system starts off evolved with that double J ureteric stents are positioned, and surgical operation is then through a sub-umbilical midline laparotomy. The round ligaments are divided, and a huge peritoneal bladder-flap is carefully dissected to keep it for graft fixation. Bilateral pelvic sidewall dissections follow, with identification and department of the obliterated umbilical arteries close to the bifurcation of the uterine arteries. figure three illustrates the positions for transecting the vascular pedicles. careful mobilization of the ureters is done, from the level of the iliac crossing and in the direction of the ureteric tunnel. Proximal

to and inside the tunnel, small arterial and venous branches are co-angled, the use of bipolar diathermy, or ligated to guard the ureters from warmth harm. as soon as the ureter is satisfactorily mobilized along the entire duration of the ureteric tunnel, with only the uterine artery and any overlying uterine veins protecting the ureter, and with-out ureteric attachment to paracervical tissue in that region, it may be identified anterior to the uterine artery because it progresses towards the bladder. A rubber sling is located around the ureter and uterine artery and veins are carefully dissected, and any venous plexuses connected to the ureters are gently separated. it is important to note that the uterine veins may additionally curve closer to the bladder in a knee-like fashion before arching downward to hook up with the pelvic side-wall and enter the internal iliac vein. The arterial segment, extending from the internal iliac artery to the uterine artery, is preserved for use as a conduit. essential arterial branches, which include iliolumbar, sacral, and vaginal arteries, are ligated, at the same time as blood drift to the gluteal artery is preserved. One or two huge uterine veins on every uterine side are carefully procured with segments of the inner iliac veins to optimize anastomosis. The uterine branch of the utero-ovarian vein is also preserved for extra venous outflow if wanted. Salpingectomy and transection of the utero-ovarian ligament is consistent with-fashioned at some stage in this dissection. In case of a postmenopausal donor, F I G U R E 2 Schematic example of the left facet of the pelvis of a deceased donor, highlighting the important veins, arteries, and ureter. The transection websites for vessels and the ureter are indicated with blacklines. The vascular pedicles linked to the uterus on the time of removal . BRÄNNSTRÖM et al.[37] , oophorectomy may be taken into consideration, and one or two lengthy segments of the complete utero-ovarian vein can be preserved on the graft. Once bilateral dissections are entire, the rectovaginal space is opened, and the utero-sacral ligaments are divided. The vagina transacted with a 2 cm rim on the uterine aspect to facilitate later anastomosis. Vascular clamps are located sequentially at the internal iliac arteries, veins, and the utero-ovarian vein branches, and the vessels are sharply divided to prepare for anastomosis. The uterus is immediately transferred to the back table for flushing and cooling. The donor surgical procedure concludes with vessel closure, ovarian fixations to the pelvic sidewalls, and widespread closure strategies, together with hem-static control and suturing. The duration of this technique is eight–eleven h.

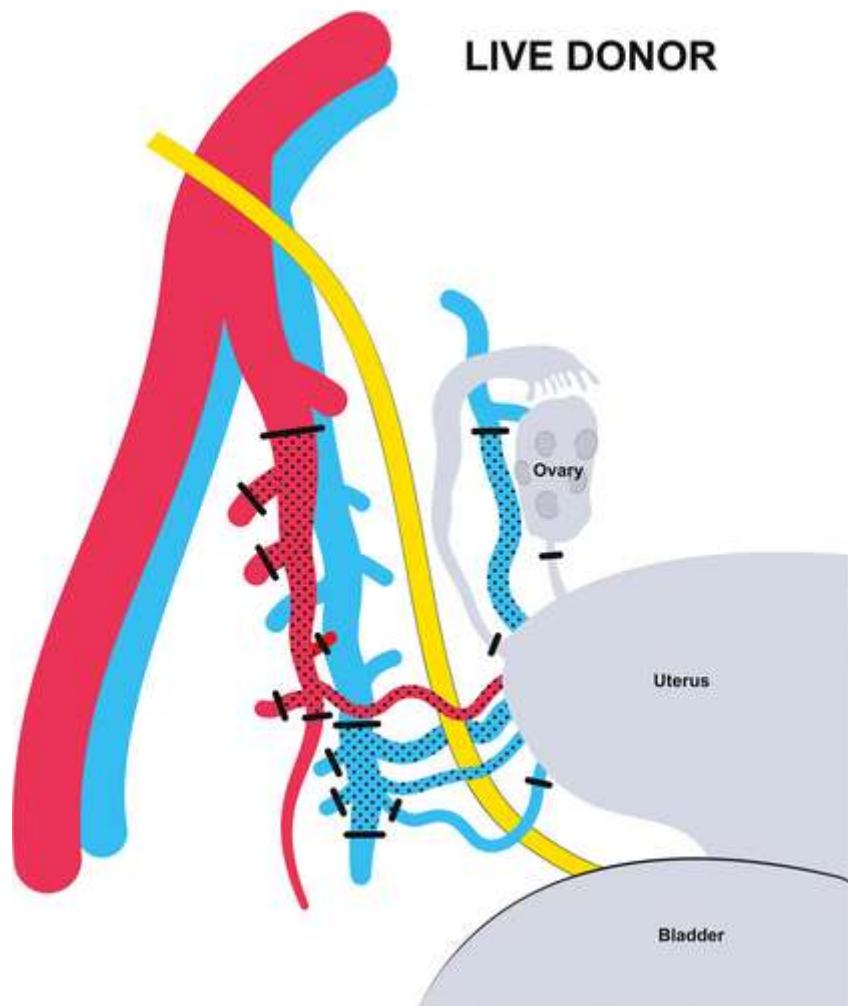


Figure 3

Schematic illustration of the left side of the pelvis of a live donor, showing the major veins, arteries, and ureter. The transection sites for vessels are indicated with black lines. The vascular pedicles connected to the uterus at the time of removal from the live donor are depicted with dotted vessels.

5.3 Technique of robotics

A robotic system with a 4-arm setup and dual-console is used, involving two robot surgeons and one laparoscopic doctor. Double J ureteric stents are positioned. The donor is placed in a 28° Trendelenburg function with aspect-docking for foremost uterine manipulator get right of entry to. contraptions encompass bipolar forceps, monopolar scissors, needle motive force, clip applier, grasping forceps, and vessel sealer. The surgery starts with transection of the spherical ligaments and dissection of the bladder flap. Pelvic sidewall dissection starts and is completed first on the proper side for higher ergonomics. An identical manner is then repeated on the left pelvic sidewall. The positions for transecting the vascular pedicles are identical to those used in laparotomy for LD hysterectomy, as proven in discern 3. The ureter is cautiously dissected from the iliac vessel and via its tun-nil, freeing it from uterine artery attachments. Bipolar diathermy controls small vessels and large vessels are sealed by way of hemostatic clips. Branches of the internal iliac arteries are dissected and sealed. The tough part is liberating the ureter for the 3–4 cm duration between its tunnel outlet and inlet into the bladder, keeping uterine veins and heading off harm. A rubber sling around the ureter aids ureter manipulation. inner iliac veins and branches are then dissected the use of clips, sutures, or vessel sealer. Steps are

repeated on the left side (parent 3). as soon as bilateral pelvic dissections are complete, salpingectomy and dissection of the uterine branches of the utero-ovarian vein are accomplished for venous outflow. usage of only these branches will now not necessitate oophorectomy, but the latter procedure, with harvesting of the whole utero-ovarian veins can be considered in a post-menopausal donor. The posterior uterus is approached via the pouch of Douglas, displaying the primary veins, arteries, and ureter. The transection web sites for vessels are indicated with black traces. The vascular pedicles linked to the uterus at the time of removal from the stay donor are depicted with dotted vessels. Subsequently, the vagina is opened, leaving a 2 cm cuff. Vessels are clamped and divided, and the uterus is bagged and removed through the vagina. The vaginal cuff is closed, hemostasis showed, and gadgets are eliminated. The duration of this procedure is 8–11 h.

5.4 UTx—method of open surgical operation

A sub-umbilical midline incision is made for laparotomy. Preparatory steps range between MRKH patients and non-MRKH patients, including people with preceding hysterectomy or dysfunctional uteri. In MRKH sufferers, the rudimentary uterus near the bladder dome and pelvic sidewalls is addressed. The transplanted uterus of typical patient, at the side of its anastomotic connections and fixations, is schematically depicted in figure four. outside iliac vessels are dissected(5–7 cm), and round ligaments are cleaved to avoid interference with graft vascular pedicles. The vaginal vault, included with the aid of the bladder, is identified and dissected the usage of upward pressure with a sphere-shaped vaginal explore for clarity, allowing separation from the bladder and rectum. The midline rudiment uterine tissue is cleaved over the vault to acquire complete publicity of the vaginal vault and for later fixation. An oval area over the vault is prepared with only the vaginal fascia masking the dome. Fixation sutures are located inside the bisected uterine rudiments and round ligaments for structural assist after insertion of the graft.

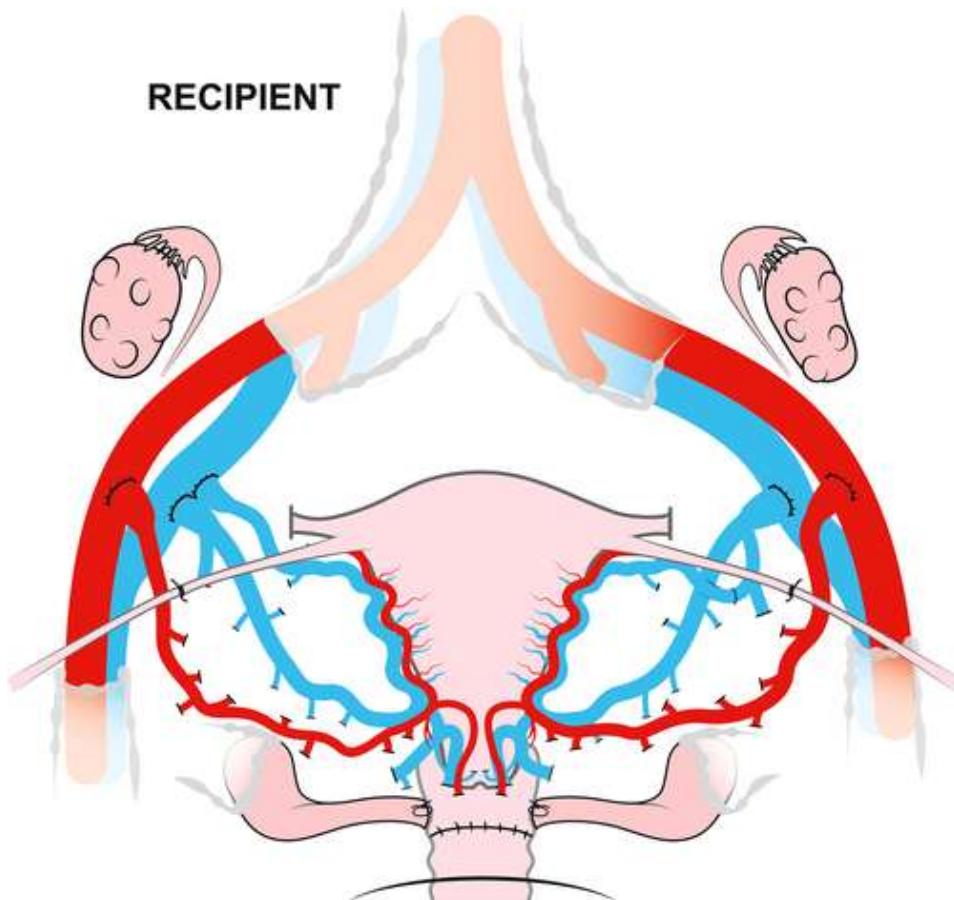


Figure 4

Schematic illustration of the pelvis of a uterine transplant recipient, showing the vascular anastomoses, vaginal anastomosis, and fixations.

For non-MRKH sufferers, dysfunctional or absent uteri require varying ranges of dissection. The external iliac arteries and veins are dissected, as defined above. Cervical stumps are removed in sub-total hysterectomies, while complete hysterectomy consists of optionally available use of uterine vessels for the graft. An open vagina, after elimination of uterus or vaginal stump, may be closed quickly to reduce contamination into the stomach in an affected person that receives IS. After finished guidance of the recipient, having a duration of 1–1.5 h, the chilled uterus is located anatomically. Vascular anastomoses are carried out end-to-side between the graft's internal iliac segments, in addition to extra utero-ovarian veins, and to the recipient's outside iliac vessels using five-zero to 7-zero polypropylene sutures. On every facet vein anastomoses (one to 2) precede artery connections, with clamps making sure haemostasis. After the uterus is properly perfused by using the recipient's blood waft, the vagina is opened (five sagittal incision) for end-to-cause vaginal-vaginal anastomosis using resorbable sutures. The two bilateral fixation sutures on bisected uterine rudiments and round ligaments provide additional structural support, and the peritoneal bladder flap is sutured to save you herniation. After confirming hemostasis, the midline incision is closed. The duration of this technique is 3–5 h.

5.5 UTx fulfilment

in contrast to different organ transplants, UTx calls for a massive duration before being deemed in reality successful, which occurs only while a healthy child is born. The UTx achievement is generally divided into two stages: surgical achievement and definitive achievement. Surgical achievement is achieved when the graft demonstrates viability and functionality, indicated by normal blood glide on stomach Doppler ultrasound and spontaneous menstruation, which signifies a hormonally responsive endometrium. This will typically be assessed round 3 months submit-transplant after observing at the least 2 menstrual cycles. Importantly, as soon as adequate blood goes with the flow and menstruation occur, graft failure on account of vascular complications or rejection turns into fantastically unlikely. but authentic successes described no longer by way of pregnancy by myself—given the risk of miscarriages—but by the birth of a healthy baby. The surgical successes of UTx had been recently summarized from seventy-one published instances. it is vital to note that many of these cases represented pioneering tries at specific centers, wherein the steep gaining knowledge of curve inherent to this kind of complex surgical process have to be considered. typical, surgical success was achieved in seventy-seven% of cases. The success rate for laparotomy-primarily based LDUTx (seventy-three%) was once akin to DD UTx (71%) but lower than robotic-assisted LD UTx (88%). however, the introduction of robot-assisted Tx occurred extra than 5 years after laparotomy UTx, in all likelihood benefiting from the enjoy and insights gained in the course of earlier instances. This high-lighting the position of non-stop refinement and accrued understanding in advancing UTx surgical outcomes.[38]

6. Complications of recipient

Acute surgical treatment-related headaches in UTx recipients have been very uncommon. however, one brilliant problem, which typically present 3–9 months after UTx is vaginal stenosis at the anastomosis site between the graft's vaginal rim and the recipient's vaginal vault. suggested incidences range: 14% within the Swedish Schematic illustration of the pelvis of a uterine transplant recipient, showing the vascular anastomoses, vaginal anastomosis, and fixations. laparotomy LD have a look at, 2 25% in the Swedish robot LD UTx examine, 42and 57% within the Czech mixed LD-DD trial.[39] Vaginal stenosis complicates cervical biopsy strategies for rejection analysis and ET, but can be addressed thru diathermic incision, forced dilation, stenting, or combinations of these strategies. Graft rejection is relatively common following UTx, though most rejection episodes are slight to moderate in severity and respond nicely to increased IS. 44 intense rejections are uncommon after UTx and has not yet led to graft elimination. [38]

7. Complications in LD

LD hysterectomy, either by laparotomy or robotics, for UTx is complex and prolonged, with usual intervals of >9 h. in the Swedish laparotomy LD UTx take a look at, one donor advanced a unilateral uretero-vaginal fistula, which used to be successfully repaired four months later, while no different primary headaches took place the various nine donors. 2In the Czech

trial, 2 of 5 laparoscopic LD donors experienced significant headaches: one advanced urinary bladder hypotonia requiring a suprapubic catheter, and another sustained a ureteric laceration repaired throughout the preliminary surgical operation and then controlled with a JJ-stent. [39] similarly, inside the Dallas. LD laparotomy arm in their UT trial, 2 of 13 donors confronted essential complications: one required anesthesia for fecal impaction, and any other underwent surgical procedure for vaginal vault prolapse. 5 robot-assisted LD surgery showed the same rate of LD headaches. in the Swedish robot trial, one out of eight donors advanced pyelonephritis with hydronephrosis, successfully controlled with antibiotics and a brief JJ-stent. [40] In conclusion, ureteric-associated injuries appear to be the most common complication in LDs for UTx, and in the destiny surgical modifications should be carried out to lower the threat of surgery-associated ureteric accidents.

8. IVF remedy in UTx

In vitro fertilization is routinely finished earlier than UTx to confirm fertility, reduce dangers of post- UTx oocyte retrieval, and reduce IS publicity time. Pre- UTx IVF assesses ovarian function, particularly in sufferers with MRKH syndrome, in which ovarian reserve can be reduced. [46] Advances, which includes random- start antagonistic stimulation protocols, have advanced results by optimizing embryo yield, reducing ovarian hyperstimulation syndrome risks, and allowing flexible initiation no matter cycle timing. In cases where pre- UTx embryos are exhausted or other specific desires stand up, post- UTx IVF is performed. demanding situations include altered ovarian positioning and vascular modifications as well as IS, increasing risks of bleeding and infection at some point of oocyte retrieval. in spite of these worries, successful oocyte retrieval and stimulation had been reported [47] using protocols tailored to the immunosuppressed nation and anatomical alterations. ET typically occurs between three and 8 months post- UTx, depending on the patient's stability and rejection pattern. Strict single ET policies are necessary to keep away from more than one pregnancies, which may pose widespread dangers on account of the vascular and anatomical limitations of the transplanted uterus. precise challenges put up- UTx include cervical hypertrophy, excessive uterine- cervical angulation, and vaginal stenosis, often requiring cautious pre- ET checks, mock transfers, and superior tools like prolonged ET catheters. Ultrasound- guided ET ensures most useful embryo placement and increases success rates. in modern times, only one complete report exists on reproductive and obstetric consequences following Tx with IVF, summarizing outcomes from the Swedish laparotomy LD UTx trial of 2012–thirteen. [47] Seven of 9 girls had successful transplants, setting out ETs three hundred and sixty-five days post- UTx. Six women gave beginning, with three having 2 infants each, resulting in altogether 9 stay births. throughout [41] ETs, the medical pregnancy rate was 32.6%, even as the stay start fee per ET was 19.6% universal and 30.0% amongst people who gave delivery. 5 of the nine live births resulted from IVF remedies executed after UTx. One affected person, regardless of 16 ETs, experienced six miscarriages (4 at weeks 7–8 and 2 at week 15), with histopathology of the past due losses revealing acute chorioamnionitis. The cumulative live start rate was 86% for seven women with viable grafts and 67% for all nine attempted UTx tactics. [42]

9. Obstetrical and neonatal outcome after UTx

pregnancy following UTx represents the very last section of a prolonged and difficult process that includes particularly complex uterine procurement surgical operation, uterine ischemia with reperfusion harm, precise vascular anastomosis surgical procedure within the recipient, being pregnant achieved through IVF and ET, as well as fetal exposure to maternal IS. These combined elements can negatively impact being pregnant outcomes in women with uterine allografts. A currently posted systematic review, which blanketed stay births following UTx, analyzed maternal and neonatal consequences for ladies who underwent this procedure. Facts from 40 live births in 36 women were blanketed in the very last evaluation. The overview reported a hypertensive disease of pregnancy charge of 22.5%, comprising 7.5% for gestational hyper-anxiety and 15.0% for preeclampsia. Gestational diabetes occurred in 7.5% of pregnancies, while intrahepatic cholestasis of pregnancy was mentioned in 5.0%. 48 Placental complications had been also observed, which includes placenta accreta spectrum in 5.0% and placenta previa in 10.0% of instances. untimely rupture of membranes happened in 15.0% of pregnancies. All forty deliveries had been singleton and thru cesarean segment. of these, 52.5% were non-obligatory cesarean sections, at the same time as 47.5% have been emergency cesarean sections. Preterm birth before occurred in 70.0% of instances, with 39.3% of these preterm births following issuer-initiated elective cesarean sections. Fetal growth restrict was once observed, in 20% and breathing distress syndrome was mentioned in 35.0% of cases. considerably, there have been no reports of APGAR score underneath 5 at 2 minutes. In conclusion,

the elevated quotes of maternal and perinatal complications emphasize 9 of 10 .The need for near tracking of pregnancies following UTx, along with the implementation of appropriate treatments and interventions during pregnancy. moreover, issuer-initiated cesarean sections should be behind schedule till after gestational week 37 to lessen the risk of prematurity and its associated complications, such as respiratory distress syndrome.[38]

10. Moral Governance of Surgical Innovation and Implications for UTx

lack of impartial moral oversight exposes patients to risks and jeopardizes the credibility of stated effects, specifically whilst innovations are brought barring formal assessment [43,44,45,46]. To keep away from this, all SIs, which include trials of UTx, must be subject to the vital principles of human research ethics, which include independent oversight by skilled and permitted human research ethics committees [47,48].Non-specialist human research ethics committees may not be experienced in the overview of surgical research, and alternative governance techniques can be needed to facilitate the well timed and effective advent and assessment of improvements. the call for ethics oversight mechanisms on the subject of SI is nicely attested inside the literature [45,48,49,50,51,52], despite the fact that there is some debate regarding the composition of such our bodies, the extent of their oversight duties, and the type of studies they should oversee. nonetheless, their middle standards are in large part fashionable: well-being of trial contributors, prevention of avoidable damage, management of capacity conflicts of interest (COI) on a part of investigators, and objective evaluation and disclosure of consequences and complications

Table 2

Key considerations for ethical review of UTx trials

Individual and institutional capacity
Key requirements to be satisfied before planning a trial:
Clinician-researcher experience in transplant surgery.
Field strength: previous surgery in animal models.
Institutional stability: background of close work of health professionals from all departments involved.
Favourable risk-benefit balance
Avoid causing harm to participants or risk minimization. Risks balanced with the expected benefits for both parties (living donors and re-birth per attempted UTx).
Enhanced informed consent process (I) Information
Information should be explained in an intelligible way for the participant.
Detailed disclosure of the innovative nature of the procedure.
Enhanced informed consent process (II) Consent
Consent should be updated in each of the UTx phrases.
Consent withdrawal should be facilitated.

Enhanced informed consent process (III) Voluntariness

Exploitation or undue influence should be prevented.

11. Summary

Uterus transplantation (UTx) research has been introduced in numerous countries, with trials in Sweden and the USA producing successful effects. The growing interest in developing UTx trials in other nations, together with Spain, the Netherlands, Japan, and Australia, raises important questions regarding the ethics of surgical innovation studies within the field of UTx. This paper examines the current kingdom of UTx in the context of the surgical innovation paradigm and best framework and discusses the moral challenges confronted through those thinking about the introduction of latest trials. We argue that UTx remains an experimental manner at a highly early level of the suitable framework, especially in the context of de novo trials, wherein protocols are likely to deviate from the ones used formerly and where researchers are in all likelihood to have constrained revel in of UTx. We conclude that international locations considering the advent of UTx trials should construct on the strengths of the mentioned effects to consolidate the proof base and shed light on the uncertainties of the technique. authorities responsible for the moral governance of UTx trials are suggested to draw on the ethical framework used inside the oversight of surgical innovation.

12. Advent

Uterus transplantation (UTx) is a capacity remedy to repair reproductive function to ladies with absolute uterine thing infertility (AIFI)[1]. A predicted one in five hundred ladies of childbearing age lack a practical uterus (genetically or received) and can revel in AIFI [2,12]. In comparison to the transplantation of stable organs (e.g., heart, liver, lungs) and like many vascular composite allografts (VCA), UTx may be taken into consideration “life-enhancing” rather than “lifestyles-saving” [4,5,6]. It gives some women with AIFI the possibility of experiencing gestation and childbirth [7], permitting them to create households that would no longer otherwise be viable [1,8,9].

Following the achievement of the first trials led by way of Brännström and co-workers in Sweden, UTx programmes had been delivered in some of nations over the past decade [8,10]. Many report developing recognition of UTx as a potential remedy for female with AIFI [12,13,14,15,16]. As more ladies are searching for to undergo UTx, there is evidence of increasing popularity of the procedure and a shift in ethical discourse approximately UTx to recognition on issues of knowledgeable consent from living donors (LD) and transplant recipients, and on fairness of get admission to to the technique [1,2,17]. a few commentators, however, argue that “UTx is still in its infancy” [53], noting that it stays an experimental method [13,14,15,], and as such, ought to be ruled by way of the existing ethical frameworks for surgical innovation (SI) [54,55]. developing hobby within the improvement of UTx in international locations with hooked up organ transplant systems, including Spain, Australia, Japan, and the Netherlands increases essential questions concerning the moral implications of new UTx trials and programmes [22,23,24]. the popularity of UTx as a surgically modern process has significant implications for nations and clinician-researchers while designing and enforcing UTx trials. in this paper we discover those implications and argue that moral scrutiny of proposed UTx trials is vital so one can guard participants and to assist unfastened and knowledgeable choice-making in a putting of widespread uncertainty and ranging practices [16,26,27,28,29,30]. especially, we spotlight the need for global cooperation that will facilitate consolidation of understanding and assist to guide the accountable translation of recent improvements inside the discipline such as using robot assisted surgical treatment.

13. Consent

Consent is always the foremost attention for moral participation in clinical trials; it's miles complex inside the context of SIs by means of the restrictions of expertise and the fact that, in evaluation to ordinary research, innovation trials are regularly typically supposed to be healing for the members. for that reason, while healing misconception may not pose as top notch a difficulty (Miller, Rosenstein, and DeRenzo 1996), transplant recipient participants are still liable to compromised choice-making and exploitation owing to their sturdy personal hobby within the outcomes of the system. Emphasis at the potential nice results of UTx and the lack of opportunity remedies might also distract trial members from the constraints of the proof base for the system. moreover, in view that LD contributors may view their function in most cases as that of a healing donor in preference to an experimental trial problem, it is important that both recipients and LDs (where relevant) are supported in making informed decisions about their participation [7,20,57]. Disclosure of the restrictions of know-how concerning the feasible dangers and blessings of the method is integral so as to make sure transparency and legitimate consent. Researchers might also fluctuate extensively from individuals regarding their view of what constitutes crucial statistics [7,46] and need to consequently pay careful attention to what and what kind of information is wanted for consent to be valid.

They have to clarify to members the constraints of cutting-edge know-how of potential benefits and dangers and their implications, which include the reality that the evidence to be had is drawn from a heterogeneous set of small-scale trials. whilst information technology may be a secondary issue in SI research, the presence of studies-associated desires can lead to COI on the part of clinician-researchers that have to be disclosed to participants in trials. Few applicants for UTx may be prone to exploitation or undue have an impact on because of familial or societal values and norms in regards to infertility or as a result of psychiatric disorders related to AUFI [57]. potential LDs can also be problem to pressures or coercion, as has been observed with regards to residing donation of other organs [58,59,60]. understanding, for instance, that recipients depend upon them for the threat to achieve their reproductive dreams via UTx can make it challenging for donors to withhold or withdraw consent. precise issues additionally observe inside the context of DD UTx, wherein specific consent for uterus retrieval have to be received from the ones chargeable for making or confirming a selection on behalf of an ability DD [61].

II. Conclusion

In precis, UTx represents a groundbreaking treatment for AUFI, made viable thru large animal studies, evolving surgical techniques, and assisted reproductive advancements. Essential milestones in animal research, inclusive of the established order of viable grafts, live births, optimized IS protocols, and team-training have paved the method for its medical success. but, the manner re-mains rather complex, with risks for LDs, recipients, and offspring, necessitating cautious patient selection, thorough preoperative preparation, and near postoperative tracking. Maternal and perinatal complications, such as hypertensive problems and preterm birth, underscore the want for vigilant obstetric care and behind schedule delivery beyond 37 weeks while feasible. furthermore, lengthy-time period research of children born after UTx should be applied, preferentially through multicenter collaborations. even as in addition research is needed to enhance effects and decrease risks, UTx gives a promising choice for women with AUFI to attain complete biological (gestational and genetic) motherhood, marking a sizable advancement in reproductive medicine.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of Interest

All authors declare no conflicts of interest.

Author Contribution

Authors have equally participated and shared every item of the work.

References

[1]-Richards, Elliott G., et al. "Framing the diagnosis and treatment of absolute uterine factor infertility: insights from in-depth interviews with uterus transplant trial participants." *AJOB empirical bioethics* 10.1 (2019): 23-35.

[2]-Ngaage, Ledibabari M., et al. "The changing paradigm of ethics in uterus transplantation: a systematic review." *Transplant International* 33.3 (2020): 260-269.

[3]-Johnson, Jane, and Wendy Rogers. "Innovative surgery: the ethical challenges." *Journal of Medical Ethics* 38.1 (2012): 9-12.

[4]-Johannesson, Liza, et al. "Guidelines for standardized nomenclature and reporting in uterus transplantation: an opinion from the United States Uterus Transplant Consortium." *American Journal of Transplantation* 20.12 (2020): 3319-3325.

[5]-Johannesson, Liza, et al. "Dallas UtErus Transplant Study: early outcomes and complications of robot-assisted hysterectomy for living uterus donors." *Transplantation* 105.1 (2021): 225-230.

[6]-Johannesson, Liza, et al. "Life underneath the VCA umbrella: perspectives from the US Uterus Transplant Consortium." *American Journal of Transplantation* 21.5 (2021): 1699-1704.

[7]-Järvholt, Stina, et al. "Uterus transplantation: joys and frustrations of becoming a 'complete' woman—a qualitative study regarding self-image in the 5-year period after transplantation." *Human Reproduction* 35.8 (2020): 1855-1863.

[8]-Testa, G., E. C. Koon, and L. Johannesson. "Living donor uterus transplant and surrogacy: ethical analysis according to the principle of equipoise." *American Journal of Transplantation* 17.4 (2017): 912-916.

[9]-Riggan, Kirsten A., et al. "Provider knowledge and support of uterus transplantation: Surveying multidisciplinary team members." *Mayo Clinic Proceedings: Innovations, Quality & Outcomes* 4.2 (2020): 150-158.

[10]-Bränström, Mats, Michael A. Belfort, and Jean Marc Ayoubi. "Uterus transplantation worldwide: clinical activities and outcomes." *Current opinion in organ transplantation* 26.6 (2021): 616-626.

[11]-Testa, Giuliano, et al. "The evolution of transplantation from saving lives to fertility treatment: DUETS (Dallas UtErus Transplant Study)." *Annals of Surgery* 272.3 (2020): 411-417.

[12]- Jones, Benjamin P., et al. "Uterine transplantation: scientific impact paper No. 65 April 2021." *BJOG: An International Journal of Obstetrics & Gynaecology* 128.10 (2021): e51-e66.

[13]- Bränström, Mats, Niclas Kvarnström, and Pernilla Dahm-Kähler. "Novel approaches in uterus transplantation." *Current Opinion in Organ Transplantation* 25.6 (2020): 584-593.

[14]- Bränström, Mats, et al. "Outcome of recipient surgery and 6-month follow-up of the Swedish live donor robotic uterus transplantation trial." *Journal of Clinical Medicine* 9.8 (2020): 2338.

[15]- Bränström, Mats, Niclas Kvarnström, and Pernilla Dahm-Kähler. "Novel approaches in uterus transplantation." *Current Opinion in Organ Transplantation* 25.6 (2020): 584-593.

[16]- da Graca, Brigit, et al. "Uterus transplantation: ethical considerations." *Current Opinion in Organ Transplantation* 26.6 (2021): 664-668.

[17]-Kristek, Jakub, et al. "Limited availability of deceased uterus donors: a transatlantic perspective." *Transplantation* 103.12 (2019): 2449-2452.

[18]-Chmel, Roman, et al. "Revaluation and lessons learned from the first 9 cases of a Czech uterus transplantation trial: Four deceased donor and 5 living donor uterus transplantations." *American Journal of Transplantation* 19.3 (2019): 855-864.

[19]- Brännström, Mats, et al. "Global results of human uterus transplantation and strategies for pre-transplantation screening of donors." *Fertility and Sterility* 112.1 (2019): 3-10.

[20]-Farrell, Ruth M., et al. "Evolving ethical issues with advances in uterus transplantation." *American journal of obstetrics and gynecology* 222.6 (2020): 584-e1.

[21]-Flyckt, Rebecca, et al. "Uterine transplantation: surgical innovation in the treatment of uterine factor infertility." *Journal of Obstetrics and Gynaecology Canada* 40.1 (2018): 86-93.

[22]-Bruno, Bethany, and Kavita Shah Arora. "Ethical implications of donor type for uterus transplantation: why we should remain wary of using living donors." *The Yale Journal of Biology and Medicine* 93.4 (2020): 587.

[23]-Kisu, Iori, et al. "Concerns associated with uterus transplantation in Japan." *The Keio Journal of Medicine* 70.3 (2020): 68-71.

[24]-Carmona, Francisco, et al. "Uterine transplantation. First viable case in Southern Europe." *Medicina Clínica (English Edition)* 156.6 (2021): 297-300.

[25]-Peters, H. E., et al. "Feasibility study for performing uterus transplantation in the Netherlands." *Human reproduction open* 2020.2 (2020): hoz032.

[26]-Balayla, Jacques. "Uterine transplants in the Canadian setting: a theoretical framework." *Journal of Obstetrics and Gynaecology Canada* 38.10 (2016): 955-960.

[27]-Williams, Nicola. "Should deceased donation be morally preferred in uterine transplantation trials?." *Bioethics* 30.6 (2016): 415-424.

[28]-Hammond-Browning, Natasha, and Nicola Jane Williams. "Developing an international registry for uterus transplantation (IRUTx): promises and challenges." *Human Reproduction* 35.12 (2020): 2643-2649.

[29]-Daolio, Jessica, et al. "Uterine transplantation and IVF for congenital or acquired uterine factor infertility: a systematic review of safety and efficacy outcomes in the first 52 recipients." *PLoS One* 15.4 (2020): e0232323.

[30]-O'Donovan, Laura, Nicola Jane Williams, and Stephen Wilkinson. "Ethical and policy issues raised by uterus transplants." *British medical bulletin* 131.1 (2019): 19-28.

[31]-Fageeh, Wafa, et al. "Transplantation of the human uterus." *International journal of gynecology & obstetrics* 76.3 (2002): 245-251.

[32]-Brännström, Mats, et al. "Livebirth after uterus transplantation." *The Lancet* 385.9968 (2015): 607-616.

[33]-York, Jackie R., et al. "Neonatal outcomes after uterus transplantation: Dallas uterus transplant study." *American Journal of Perinatology* 40.01 (2023): 042-050.

[34]-Ricci, Stephanie, Carrie Bennett, and Tommaso Falcone. "Uterine transplantation: evolving data, success, and clinical importance." *Journal of Minimally Invasive Gynecology* 28.3 (2021): 502-512.

[35]-Richards, Elliott G., et al. "Framing the diagnosis and treatment of absolute uterine factor infertility: insights from in-depth interviews with uterus transplant trial participants." *AJOB empirical bioethics* 10.1 (2019): 23-35.

[36]-Dahm-Kähler, Pernilla, Niclas Kvarnström, and Mats Brännström. "Robotic live donor hysterectomy." *Current Opinion in Organ Transplantation* 26.6 (2021): 640-645.

[37]-El-Akouri, R. Racho, et al. "Heterotopic uterine transplantation by vascular anastomosis in the mouse." *Journal of Endocrinology* 174.2 (2002): 157-166.

[38]-Brännström, Mats, et al. "Uterus transplantation: from research, through human trials and into the future." *Human Reproduction Update* 29.5 (2023): 521-544.

[39]-Fronek, Jiri, et al. "Human uterus transplantation from living and deceased donors: the interim results of the first 10 cases of the Czech trial." *Journal of Clinical Medicine* 10.4 (2021): 586.

[40]- Brännström, Mats, et al. "Evolution of surgical steps in robotics-assisted donor surgery for uterus transplantation: results of the eight cases in the Swedish trial." *Fertility and Sterility* 114.5 (2020): 1097-1107.

[41]- Brännström, Mats, et al. "Reproductive, obstetric, and long-term health outcome after uterus transplantation: results of the first clinical trial." *Fertility and Sterility* 118.3 (2022): 576-585.

[42]- Raziel, A., et al. "Surrogate in vitro fertilization outcome in typical and atypical forms of Mayer-Rokitansky-Küster-Hauser syndrome." *Human Reproduction* 27.1 (2012): 126-130.

[43]-Glazier, Alexandra K. "Regulatory oversight in the United States of vascularized composite allografts." *Transplant International* 29.6 (2016): 682-685.

[44]-Fonouni, Hamidreza, et al. "Comparison of the laparoscopic versus open live donor nephrectomy: an overview of surgical complications and outcome." *Langenbeck's archives of surgery* 399.5 (2014): 543-551.

[45]-Broekman, Marike L., Michelle E. Carrière, and Annelien L. Bredenoord. "Surgical innovation: the ethical agenda: a systematic review." *Medicine* 95.25 (2016): e3790.

[46]-Ceelen, Wim P. "Clinical research in surgery: threats and opportunities." *European Surgical Research* 53.1-4 (2014): 95-107.

[47]-Reitsma, Angelique M., and Jonathan D. Moreno. "Ethical guidelines for innovative surgery." (2006).

[48]-Biffl, Walter L., et al. "Responsible development and application of surgical innovations: a position statement of the Society of University Surgeons." *Journal of the American College of Surgeons* 206.6 (2008): 1204-1209.

[49]-McKneally, Martin F. "Ethical problems in surgery: innovation leading to unforeseen complications." *World journal of surgery* 23.8 (1999): 786-788.

[50]-Morreim, Haavi, Michael J. Mack, and Robert M. Sade. "Surgical innovation: too risky to remain unregulated?." *The Annals of thoracic surgery* 82.6 (2006): 1957-1965.

[51]-Johnson, Jane, and Wendy Rogers. "Innovative surgery: the ethical challenges." *Journal of Medical Ethics* 38.1 (2012): 9-12.

[52]-Karpowicz, Lila, Emily Bell, and Eric Racine. "Ethics oversight mechanisms for surgical innovation: a systematic and comparative review of arguments." *Journal of Empirical Research on Human Research Ethics* 11.2 (2016): 135-164.

[53]-Chmel, Roman, et al. "Revaluation and lessons learned from the first 9 cases of a Czech uterus transplantation trial: Four deceased donor and 5 living donor uterus transplantations." *American Journal of Transplantation* 19.3 (2019): 855-864.

[54]-Farrell, Ruth M., et al. "Evolving ethical issues with advances in uterus transplantation." *American journal of obstetrics and gynecology* 222.6 (2020): 584-e1.

[55]-Flyckt, Rebecca L., et al. "Deceased donor uterine transplantation: innovation and adaptation." *Obstetrics & Gynecology* 128.4 (2016): 837-842.

[56]-Petrini, Carlo, et al. "Ethical issues in uterine transplantation: psychological implications and informed consent." *Transplantation Proceedings*. Vol. 49. No. 4. Elsevier, 2017.

[57]-Saso, Srdjan, et al. "Psychological assessment tool for patients diagnosed with absolute uterine factor infertility and planning to undergo uterine transplantation." *Journal of Obstetrics and Gynaecology* 34.6 (2014): 504-507.

[58]-Elliott, Carl. "Doing harm: living organ donors, clinical research and The Tenth Man." *Journal of medical ethics* 21.2 (1995): 91-96.

[59]-Abdeldayem, Hesham, et al. "Analysis of donor motivations in living donor liver transplantation." *Frontiers in surgery* 1 (2014): 25.

[60]-Valapour, M., et al. "Assessing elements of informed consent among living donors." *Clinical transplantation* 25.2 (2011): 185-190.

[61]-Caplan, Arthur L., et al. "Moving the womb." *Hastings Center Report* (2007): 18-20.3. Brännström M, Johannesson L, Bokström H, Kvarnström N, Mölnér J, Dahm-Kähler P, et al. Livebirth after uterus transplantation. *Lancet*. 2015;14:607-16.
