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Abstract— The aim of this work was to use the 1D-CNN model to model the evolution of CO2 emission variations relative to the 
reference year 1990 in Madagascar. More specifically, the goal was to determine the optimal number of epochs for the 1D-CNN model 
that produces the best modeling performance. The datasets consisted of an annual time series of CO2 emission variations in Madagascar 
relative to 1990, covering the years from 1991 to 2022. For the experiment, the dataset was split into two parts: 80% (from 1991 to 2018) 
was used to train the model, and 20% (from 2018 to 2022) was used to test the model. The simulation was performed every 5 epochs, 
and the difference between the actual and predicted values was measured using the MAE (Mean Absolute Error) metric. The optimal 
number of epochs was determined based on the curve showing the evolution of the average MAE between the training and test data as a 
function of the number of epochs. After simulation, the minimum average MAE was observed at the 1965th epoch. The results of the 
1D-CNN model forecasts, extending to a 10-step horizon, predict a more or less stationary trend in CO2 emissions relative to the 
reference year 1990 in Madagascar beyond 2023. 
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I. INTRODUCTION  

 CO2 emissions are one of the key indicators of air pollution. Globally, CO2 emissions have been increasing since the 
Industrial Era [1]. However, during the year 2020, marked by the COVID-19 pandemic, emissions significantly dropped due to 
worldwide lockdowns [2]. In Madagascar in particular, the trend in the curve showing the variation in CO2 emissions for the 
current year compared to 1990 shows a similar pattern to the global average, but with a much less pronounced slope [1] [3] [4]. 
After the lockdown, the evolution curve takes on a new pattern. It is therefore interesting to study the evolution of this parameter 
following the resumption of human activities. 

The problem is therefore to find a model capable of simulating the future evolution of CO2 emissions in Madagascar. 
Among the models capable of performing this task, the 1D-CNN model [5] [6] [7] [8] [9] was studied. This work aimed to 
determine the optimal 'epoch' parameter to obtain the best modeling of  CO2 emissions variation relative to the reference year 1990 
using the said model. 
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II. MATERIALS AND METHODS 

A. EXPERIMENTAL DATA 

 Table 1 summarizes the datasets used for the experiment. The datasets can be downloaded from: 

https://data.worldbank.org/indicator/EN.GHG.CO2.ZG.AR5?locations=MG 

 These data relate to the variation in emissions (in %) for the current year compared to the reference year 1990 for carbon 
dioxide  concerning carbon dioxide—one of the six greenhouse gases (GHGs) covered by the Kyoto Protocol. Emissions come 
from the agriculture, energy, waste, and industry sectors, excluding the LULUCF (Land Use, Land-Use Change and Forestry) 
sector. This measurement is standardized in carbon dioxide equivalents using the Global Warming Potential (GWP) factors from 
the IPCC’s Fifth Assessment Report (AR5). 

TABLE I.  VARIATION IN CO2 EMISSIONS IN MADAGASCAR COMPARED TO THE REFERENCE YEAR 1990 (IN %) 

                                           Source: https://data.worldbank.org/indicator/EN.GHG.CO2.ZG.AR5?locations=MG  

Year 
Variation in CO2 emissions in Madagascar 

Compared to the Reference Year 1990 (in %) 

1991 6.9 

1992 8.3 

1993 12.2 

1994 38.3 

1995 55.8 

1996 49.7 

1997 64.2 

1998 83.4 

1999 88.1 

2000 86.6 

2001 88.4 

2002 28.4 

2003 70.7 

2004 84.6 

2005 97 

2006 88.8 

2007 98.6 

2008 106 

2009 95.6 

2010 116.8 

2011 152.7 

2012 214 

2013 235.9 

2014 245.1 
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Year 
Variation in CO2 emissions in Madagascar 

Compared to the Reference Year 1990 (in %) 

2015 276.5 

2016 258.1 

2017 291.3 

2018 271.9 

2019 340.77 

2020 211.4 

2021 236.9 

2022 251.4 

 

B. STEPS OF  THE  MODELING PROCESS 

The modeling of the time series data was carried out according to the following steps: 

 Step 1: Preprocessing of the experimental data;  

 Step 2: Training of the 1D-CNN model; 

 Step 3: Testing of the model; 

 Step 4: Selection of the optimal number of  epochs; 

 Step 5: Modeling using 1D-CNN with the optimal epoch. 

B.1 Step 1: Preprocessing of the experimental data 

In the context of our experimentation, the data preprocessing steps were: 

 Splitting the dataset into training  data and test data; 

 Creating the sequences. 

B.1.1 Splitting the dataset into training data and test data 

The training data consisted of 80% of the total data, that is, the data from 1991 to 2014 (over 24 years). 
The test data were made up of 20% of the entire dataset. The test data consisted of the data from 2015 to 2020 (over 6 years). 

B.1.2 Creating the sequences 

In this study, the data consisted of univariate time series, representing the variation (in %) of CO2 emissions for the 
current year compared to the reference year 1990 in Madagascar. Before training, the data were first normalized to facilitate the 
learning process of the model and ensure a more stable convergence. This scaling can be done, for example, using a MinMaxScaler 
from scikit-learn in Python. 

 Next, the normalized series was split into sliding subsequences of length n_steps = 3, which corresponded to the 
number of inputs for the 1D-CNN model [5] [6] [7] [8] [9]. 

For example, from the sequence:  
scaled_seq_train = [0.2, 0.3, 0.5, 0.7, 0.6] 
The slicing produces the following sequences: 
• X1 = [0.2, 0.3, 0.5] → y1 = 0.7 
• X2 = [0.3, 0.5, 0.7] → y2 = 0.6 
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This transformation was applied to both the training data (scaled_seq_train) and the test data (scaled_seq_test), resulting in 
pairs (Xi, yi) for supervised learning. 

B.2 Step 2: Training of the 1D-CNN model 

The training of the 1D-CNN model [5] [6] [7] [8] [9] was done using only the data from 1991 to 2014. 

B.2.1 Architecture of the 1D-CNN model used. 

The proposed model was based on a one-dimensional convolutional neural network (1D-CNN) architecture [5] [6] [7] 
[8] [9] developed with the Keras library of TensorFlow in Python.  

This type of network is particularly suited for processing sequential data such as time series or signals. 
The architecture consists of the following layers:  

 A one-dimensional convolutional layer (Conv1D) with 64 filters and a kernel size of kernel_size = 2, with a ReLU 
activation function; 

 A flattening layer; 

  The first dense layer; 

  The second and final dense layer. 

a) The one-dimensional convolutional layer Conv1D 

This layer allows capturing local temporal patterns in the input sequences [5] [6] [7] [8] [9]. 
For example, an input sequence [x1, x2, x3] to be passed through a Conv1D layer with a single filter and kernel_size = 2 that is, 
filter = [w1, w2], and let b be the bias. At the output of the Conv1D layer (without activation), the outputs are pos1 and pos2 such 
that: 

 
                                                              pos1 = w1 * x1 + w2 * x2 + b                                                                           (1) 
                                                              pos2 = w1 * x2 + w2 * x3 + b                                                                           (2) 

  

                        This process was repeated 64 times with different weights, giving 64 outputs for pos1 and 64 outputs for pos2. 
The application of the ReLU activation function sets any negative values potentially found in the 64 outputs for pos1 and the 64 
outputs for pos2 to zero. 

Indeed, the ReLU (Rectified Linear Unit) is defined by: 

 
                                                                      ReLU(z) = max(0, z)                                                                               (3) 

 
It transforms each output zi of the convolution as follows: 

 
                                                                      If zi > 0 then ReLU(zi) = zi                                                                      (4) 
                                                                      If zi ≤ 0 then ReLU(zi) = 0                                                                      (5) 

 
                             Thus, at the input of the convolution layer, we have a tensor of dimension (3, 1), and at the output, a tensor of 
dimension (2, 64). 

b) A flattening layer 



                     International Journal of Progressive Sciences and Technologies (IJPSAT) 
                     ISSN: 2509-0119.  
                     © 2025 Scholar AI LLC. 
        https://ijpsat.org/                                                        Vol. 53 No. 2 November 2025, pp. 71-79 

 

 
Vol. 53 No. 2 November 2025               ISSN: 2509-0119 75 

The flatten layer [5] [6] [7] [8] [9] flattens the convolutional output into a one-dimensional vector so that it can 
be used in the subsequent dense layers. In our case, the 2×64 matrix was flattened into a vector of size 128. 

c) The first dense layer 

The first dense layer consists of 64 fully connected neurons with a ReLU activation function. This layer learns 
complex combinations of features extracted by the convolutional filters, acts as an interpreter of the local patterns previously 
detected, and enables the network to model non-linear relationships between the temporal sequences and the target output. 

The dense layer [5] [6] [7] [8] [9] receives a vector of size 128 from the flattened layer as input. The parameters 
of this layer are: 

 The weight W, which is a matrix of dimensions 128x64 (each of the 64 neurons is connected to all 128 elements); 

 The bias b, which consists of 64 values (one value per neuron). 

Each of the 64 neurons in this layer performs the following operations: 

                                         𝑧௜ =  ∑ 𝑤௝௜𝑥௝ +  𝑏௜   
ଵଶ଼
௝ୀଵ                                                                        (6) 

                                        Then  𝑎௜ = 𝑅𝑒𝐿𝑈(𝑧௜)                                                                    (7) 

Where : 

 𝑤௝௜  denotes the learned weight connecting input j to neuron i in the Dense (64) layer; 

 𝑥௝ is the input value received by the Dense (64) layer; 

 𝑏௜ is the bias associated with neuron i. 

Therefore, the final output of this layer is a vector of size 64, with the ReLU activation applied. 

d) The second and last dense layer 

The final dense layer is the output layer of the 1D-CNN model [5] [6] [7] [8] [9]. This layer consists of a single fully 
connected neuron without an activation function. 

The layer receives a vector of size 64 from the previous dense layer as input and simply performs the following 
calculation: 

                                      𝑦ො =  ∑ 𝑤௜  𝑥௜ +  𝑏଺ସ
௜ୀଵ                                                   (8) 

Where: 

𝑦ො : The value predicted by the model; 

𝑥௜ : The output value from the previous layer; 

𝑤௜  : The learned weight; 

𝑏 : The learned bias. 

B.2.2 Compilation and training of the 1D-CNN model 

Compilation is the preliminary step before training the 1D-CNN model [5] [6] [7] [8] [9]. The compilation parameters 
are the optimizer and the loss function. 

The model was compiled using the Adam optimizer [10], known for its robustness and fast convergence. This optimizer 
dynamically adjusts the learning rate of each parameter. 



                     International Journal of Progressive Sciences and Technologies (IJPSAT) 
                     ISSN: 2509-0119.  
                     © 2025 Scholar AI LLC. 
        https://ijpsat.org/                                                        Vol. 53 No. 2 November 2025, pp. 71-79 

 

 
Vol. 53 No. 2 November 2025               ISSN: 2509-0119 76 

The loss function used was Mean Square Error (MSE) given by the formula: 

                                                𝑀𝑆𝐸 =  
ଵ

௡
 ∑ (𝑦ො௜ −  𝑦௜)ଶ௡

௜ୀଵ                                                            (9) 

Where: 

 𝑦ො௜ is the predicted value from the model; 

 𝑦௜  is the expected value; 

 𝑛 : is the number of observations. 

The model was trained with the default batch size value of 32 and a maximum epoch value of 2000.  

The batch size [11] determines how many samples are processed together before updating the model weights. 

An epoch [12] corresponds to one full pass through the entire training dataset. 

B.3 Step 3: Testing  the 1D-CNN model 

After training, the model was evaluated on the test data. The performance was measured using the Mean Absolute Error 
(MAE) metric, which measures the average difference between the model’s output and the observed data. The mathematical 
formula to calculate the MAE is: 

                         𝑀𝐴𝐸 =  
ଵ

௡
 ∑ |𝑦௜ −  𝑦ො௜|

௡
௜ୀଵ                                                          (10) 

Where: 

𝑦ො௜   is the predicted value from the model; 

𝑦௜  is the observed value. 

B.4 Step 4: Selection of the optimal number of epochs 

The simulation was carried out with a maximum epoch value of 2000. The selection of the optimal number of epochs is 
based on the evolution of the MAE curve between the training and test data of the model as a function of the epoch. 
The optimal epoch is the one corresponding to the minimum Mean Absolute Error. 

B.5 Step 5: Modeling with 1D-CNN using the optimal epoch 

Once the optimal epoch value was determined, the model was trained using the training data and the optimal epoch as the 
training parameter.  

The model was then tested again using the test data. The trained and tested model was then capable of forecasting the time 
series over a 10-step horizon.  

III. RESULTS AND INTERPRETATIONS 

A. Result of the Search for the Optimal Epoch Value 

Figure 1 shows the evolution of the error curve (in %) as a function of the epoch for the training data (in blue), the test 
data (in red), and the average of the two curves (in green). The modeling error decreases rapidly during the initial epochs for both 
the training and test data. After the 50th epoch, the error continues to decrease more gradually, and the minimum error is only 
reached at the 1965th epoch. This corresponds to the optimal epoch value sought. 
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Fig. 1 MAE Curve for the Search of the Optimal Epoch Value 

B. Result of the Modeling Using the Optimal Epoch Value 

Figure 2 shows the result of modeling the evolution of CO2 emissions in Madagascar (in %) compared to the reference 
year 1990. The black curve represents the observed data. The blue curve corresponds to the training data, the red curve to the test 
data, and the green dashed curve shows the forecast up to horizon 10. The results of the 1D-CNN model’s forecast up to horizon 
10-year horizon predict a more or less stationary trend in CO2 emissions compare to the reference year 1990 in Madagascar beyond 
2023. 

 

Fig. 2  Results of modeling CO2 variation in Madagascar using the 1D-CNN model. 
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IV. DISCUSSION 

The results obtained using the 1D-CNN model [5] [6] [7] [8] [9] demonstrated that this approach is relevant for modeling 
the evolution of CO2 emission variations in Madagascar compared to the reference year 1990. The search for the optimal number of 
epochs, based on the analysis of  the behavior of the Mean Absolute Error (MAE) as a function of epochs, identified epoch 1965 as 
offering the most satisfactory compromise between fitting the training data and generalizing to the test data. This point corresponds 
to a local minimum of the average MAE curve, suggesting a good balance between underfitting and overfitting [13]. 

Choosing a step size of 5 epochs for the analysis provided sufficient granularity to detect significant changes while 
maintaining a reasonable computational complexity. This type of strategy is also employed in other time series modeling studies to 
identify optimal hyperparameters [14]. 

Furthermore, the relatively stationary trend observed in the forecasts beyond 2023 aligns with uncertainties related to 
Madagascar’s current climate, economic, and environmental policies. In the absence of major shifts in energy policy or economic 
activity, it is plausible that CO2 emission variations remain stable, as also suggested by other regional studies in sub-Saharan Africa 
[15]. 

The 1D-CNN model, commonly used for pattern recognition in univariate time series data, appears well suited here for 
environmental time series despite its relative simplicity, compared to recurrent models such as LSTM or GRU. Its effectiveness lies 
notably in its ability to automatically extract relevant local features through convolutional filters while maintaining a less resource-
intensive architecture [16]. 

However, some limitations should be noted. First, the study did not consider exogenous explanatory factors (economic, 
demographic, energy data) that could improve prediction accuracy. Additionally, the forecasting horizon remained short (10 years), 
which limited the scope of medium- and long-term conclusions. 

V. CONCLUSION 

This study showed that one-dimensional convolutional neural networks (1D-CNN) provide an effective solution for 
modeling simple time series. By automatically extracting local features within sequences, the model was able to produce accurate 
predictions while being lighter and faster to train than traditional sequential models such as LSTMs. 
Future works include extending the approach to multivariate time series, adding regularization layers like Dropout or Batch 
Normalization, comparing with other architectures such as LSTM, GRU, or Transformers, and incorporating cross-validation for 
increased robustness. 
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