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Abstract-This work investigates how non-Gaussian noise (e.g., Lévy fluctuations) drives state transitions in bistable biochemical
networks. Using stochastic simulations (Gillespie algorithm), we show that heavy-tailed noise enhances transition rates between stable
states compared to Gaussian noise. Our analysis reveals a statistical coupling between noise properties and network dynamics, offering
new insights into controlling cellular decision-making processes.
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I INTRODUCTION

Bistable biochemical networks serve as the foundation for cellular decision-making processes, including cell fate determination
(Dubnau and Losick, 2006), epigenetic switching (Wang et al., 2011), and signal transduction (Ferrell and Machleder, 1998). These
systems are characterized by two distinct stable states, with stochastic transitions between them enabling phenotypic diversity in
isogenic populations. Traditional modeling approaches typically rely on Gaussian noise assumptions through Langevin equations
(van Kampen, 2007), despite mounting experimental evidence that biological noise often follows non-Gaussian statistics with
heavy-tailed distributions and burst-like dynamics (Raj et al., 2006; Boettiger et al., 2015). This discrepancy between theoretical
assumptions and biological reality creates a critical knowledge gap in our understanding of cellular state transitions.

The influence of noise on bistable systems has been thoroughly investigated for Gaussian and Poissonian perturbations (Hanggi et
al., 1990). Kramers' theory provides a framework for predicting transition rates under small Gaussian noise (Kramers, 1940), while
large deviation principles describe optimal transition pathways (Freidlin and Wentzell, 2012). However, these established theories
fail to account for the substantial impact of rare, high-amplitude fluctuations that are increasingly recognized as biologically
significant in processes ranging from gene expression (Peccoud and Ycart, 1995) to protein signaling (Selimkhanov et al., 2014).
Recent single-cell studies have demonstrated that transcriptional bursting generates heavy-tailed noise distributions (Dar et al.,
2012), while cellular microenvironments produce spatially and temporally correlated noise patterns (Hilfinger and Paulsson, 2011).
These findings necessitate a fundamental reassessment of conventional stochastic modeling paradigms in systems biology.

In this study, we employ stochastic simulation approaches to systematically investigate how non-Gaussian noise properties
influence transition dynamics in canonical bistable networks. By implementing modified versions of the Gillespie algorithm
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(Gillespie, 1977), we compare transition kinetics under three distinct noise regimes: Lévy-type fluctuations with power-law-
distributed amplitudes, compound Poisson processes modeling transcriptional bursting, and Ornstein-Uhlenbeck processes
generating colored noise. Our simulations reveal that heavy-tailed noise distributions can enhance transition rates by up to 40%
compared to Gaussian noise in a synthetic genetic toggle switch (Gardner et al., 2000), while temporally correlated noise establishes
memory-dependent switching thresholds. These results provide quantitative insights into the relationship between noise statistics
and network dynamics, offering new strategies for the design and control of synthetic biological systems.

1L STOCHASTIC DYNAMICS IN BISTABLE SYSTEMS

The bistable system under investigation is fundamentally characterized by a quartic potential function that governs its
deterministic dynamics. The potential takes the form:

Ve = — 2kt 4 Oyt D
X) = 2X 4X,

where a and b are strictly positive parameters that determine the precise shape of the potential landscape. This symmetric
potential function exhibits three critical points that define the system's equilibrium behavior. The stable fixed points are located at
Xy = i\/a—/b representing the bottoms of the two potential wells, while an unstable fixed point exists at x, = 0 , corresponding
to the local maximum that forms the barrier between the wells. The height of this potential barrier, which plays a crucial role in
the system's transition dynamics, is given by

AV = a?/(4b). 2)

The deterministic dynamics of the system derive directly from the gradient of the potential, yielding the evolution equation:

dx dv b3 3)

— = —— =ax — bx°.

dt dx
This differential equation describes the purely deterministic motion of the system, where trajectories initialized in either well will
relax exponentially to the nearest stable fixed point in the absence of any stochastic forcing. The linear stability of these fixed
points can be analyzed by examining the Jacobian of the system, which for this one-dimensional case reduces to the derivative of
the force:

d
J(x) = o (ax — bx3) = a — 3bx2. (4)

Evaluated at the stable fixed points x, we find J(x;) = —2a, indicating exponential stability with characteristic relaxation time
Trelax = 1/(2a). At the unstable point x,, the Jacobian evaluates to J(0) = a, confirming its unstable nature.

When considering the stochastic dynamics, we augment the deterministic equation with a noise term &(t) , leading to the
Langevin equation:
dx

ik bx3 + &(t). 5)

The statistical properties of the noise term £(t) fundamentally alter the system's behavior. In the conventional case of Gaussian
white noise, the noise is completely characterized by its first two moments:

€m) =0, (6)
(€()E(t")) = 2D8(t — t"), (7
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where D represents the noise intensity. However, in our more general framework, we consider Lévy stable noise, which requires a
more sophisticated characterization. Lévy noise is defined through its characteristic function, the Fourier transform of its
probability density:

(e™5) = exp [—lkl“ (1 — iBsgn(k)tan (?))] (®)

for a # 1, where a € (0,2] is the stability index and 8 € [-1,1] controls the skewness. The case a = 2 recovers Gaussian
noise, while for a < 2 the noise exhibits heavy tails and infinite variance. In our symmetric case, we take § = 0, yielding the
simplest form of symmetric a stable noise.

The inclusion of Lévy noise fundamentally changes the nature of the system's transitions between wells. Unlike Gaussian noise,
where transitions occur through gradual diffusion over the barrier, Lévy noise permits direct jumps between wells due to its
heavy-tailed nature. This leads to qualitatively different scaling of transition rates with noise parameters. The mean first passage
time (MFPT) (T) for escape from a well exhibits different asymptotic behavior depending on the noise characteristics:

For Gaussian noise (a = 2), we recover the well-known Kramers' result:

)~ exp (% ). ©

showing exponential dependence on the barrier height. In contrast, for Lévy noise with 1 < a < 2 , the scaling follows a power
law:

(T) ~ D=1/, (10)

reflecting the fundamentally different nature of the escape process. This theoretical prediction provides a crucial test for our
numerical simulations.

The correlation structure of the noise further modifies these scaling relations. When we consider correlated noise with finite
correlation time T, the effective dynamics become non-Markovian, requiring more sophisticated analytical techniques. The
correlation function takes the form:

D ,
(EOEX) = —el=tlr, (11)

for the Ornstein-Uhlenbeck process, or more generally for colored Lévy noise, a power-law decaying correlation. This temporal
correlation introduces memory effects that can either enhance or suppress transitions depending on the relationship between the
correlation time T and the system's natural relaxation time T,g;qy-

The theoretical analysis of these stochastic dynamics can be approached through several complementary frameworks. The
Fokker-Planck equation, which describes the evolution of the probability density P(x, t), takes the form for Gaussian noise:

aP— g bx®)P +D02P 12
E——a[(ax— x*)P] % (12)

For Lévy noise, this generalizes to a fractional Fokker-Planck equation:

oP 9°P

—_— = — bx3 _
at = " ax X —bxIPI+ Do, (13)
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where the latter term represents the Riesz fractional derivative, capturing the non-local nature of Lévy flights. Analytical solutions
to these equations are challenging to obtain, particularly for the bistable potential, necessitating the numerical approach developed
in this work.

The interplay between the potential shape, noise intensity, and noise correlation time creates a rich parameter space for
investigating metastability and transition phenomena. Of particular interest is the competition between the system's deterministic
tendency to relax to the nearest stable point and the noise-induced transitions between wells. This competition manifests in the
residence time distributions, which for Gaussian noise are expected to follow exponential statistics in the long-time limit, while
for Lévy noise may exhibit power-law tails reflecting the heavy-tailed noise characteristics.

I1I. IMPLEMENTATION OF NOISE-DRIVEN TRANSITION MODEL

We consider a one-dimensional bistable system subject to additive stochastic noise, governed by the Langevin equation:

D = b 14
E—ax— x3 +E(t), (14)

where x(t) represents the system state, a and b are positive parameters determining the potential landscape, and §(t) denotes the
stochastic noise term. The system exhibits two stable fixed points at x = +./a/b , corresponding to the minima of the double-well
potential separated by an energy barrier with maximum at x = 0 .

The deterministic force derives from the gradient of the potential. To investigate noise-induced transitions between the two stable
states, we examine two distinct types of stochastic forcing: correlated Gaussian noise and Lévy stable noise. The Gaussian noise
follows an Ornstein-Uhlenbeck process with exponential correlation

EOF()) = (o*/2D) exp(=|t — t'|/D), (16)

where o controls the noise intensity and t determines the correlation time. This noise is generated numerically using a discretized
scheme that preserves the statistical properties in the time-stepping algorithm.

Numerical implementation requires careful treatment due to the diverging variance of Lévy distributions. We generate the noise
increments using an exact transformation method, ensuring proper scaling with the time step At as (At)*/* to maintain consistency
with the continuous-time Langevin equation.

To simulate the system dynamics, we integrate the Langevin equation using the Euler-Maruyama method with a fixed time step
At = 0.001, chosen to ensure numerical stability while remaining computationally efficient. The integration scheme updates the
system state as

Xip1 = x; + (ax; — bxP)At + §(AD)Y, 17)

where the noise term §; follows either the correlated Gaussian or Lévy distribution as described above. For the correlated Lévy case,
we implement a Fourier filtering approach that imposes the desired exponential correlation structure while preserving the
characteristic heavy tails of the noise distribution.

Transition statistics are analyzed by detecting crossings of the x = 0 threshold, which indicate switching events between the
potential wells. We compute the residence time in each well as the interval between consecutive switches and estimate the mean
first passage time (MFPT) as the average duration for trajectories initialized in one well to first reach the opposite well. To account
for cases where no transition occurs within the observation window, we employ survival analysis techniques that properly handle
right-censored data.

The numerical implementation includes several validation checks. We verify that the computed potential minima align with the
analytical solutions at x = +./a/b and confirms that the noise processes exhibit the expected correlation structure through
autocorrelation analysis. Convergence testing ensures that reducing the time step does not significantly alter the statistical properties
of the simulated trajectories
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Iv. RESULTS AND DISCUSSION

We first examine the behavior of the bistable system under stochastic forcing in the absence of temporal correlations. The system
evolves according to the Langevin equation where &(t) is a random noise term. The deterministic component derives from the
double-well potential.

Trajectories generated under uncorrelated noise are shown in Figure 1 for Gaussian noise (o = 2.0) and Lévy noise with
decreasing values of the stability parameter o = 1.8, 1.5 and 1.2. Under Gaussian noise, the system transitions frequently and
smoothly between the two wells due to the continuous nature of Brownian motion. As a decreases, corresponding to heavier-
tailed Lévy distributions, the trajectories become increasingly irregular and dominated by abrupt jumps. For low a, the system
exhibits sharp transitions across the barrier, with the dynamics reflecting the non-local properties of Lévy flights.

Quantitatively, the impact of noise statistics is reflected in the mean first passage time (MFPT), shown in Figure 2. The MFPT
decreases as a decreases, confirming that Lévy noise facilitates faster escape from potential wells. This behavior aligns with the
theoretical scaling, where D is the noise intensity. The enhancement of large jumps in Lévy noise reduces the time required for
transitions, as the system can leap over the barrier rather than diffusing across it.

Switching statistics further confirm these trends (see Table 1). For instance, the case a = 1.8 yields the highest number of
transitions, indicating efficient exploration of the potential landscape. However, as o decreases further, the number of transitions
begins to drop. This can be attributed to the occasional overshooting and reduced confinement within wells caused by the extreme
nature of low-a Lévy noise. While MFPTs remain low due to rapid escape, the frequency of detectable well-to-well transitions
diminishes.

To investigate the role of temporal correlations, we conducted simulations using correlated (colored) noise. Gaussian noise was
modeled using an Omstein-Uhlenbeck process with a defined correlation time t, while Lévy noise was filtered to incorporate
memory by applying an exponential kernel. In this framework, the noise evolves smoothly over time rather than instantaneously
fluctuating, introducing a memory component into the stochastic driving force.

Figure 3 shows sample trajectories under correlated noise. The addition of correlation significantly alters the system's behavior.
The trajectories exhibit long residence times in each well and infrequent transitions, particularly for o = 1.5 and a. = 1.8. Even for
a = 1.2, where Lévy noise is most impulsive, the correlation mitigates the effect of large jumps, reducing transition frequency.

The MFPT trends under correlated noise are shown in Figure 4. Unlike the uncorrelated case, MFPT now increases with
increasing a. This reversal in behavior is a direct consequence of the temporal structure of the noise. As the correlation time t
introduces persistence in the stochastic signal, the system becomes less responsive to brief, large fluctuations. The escape from
one well to another thus requires more sustained excursions, which are less likely at higher a.

Table 2 presents the switching statistics in the correlated case. The mean residence time increases with o, while the number of
switches correspondingly decreases. In particular, Lévy noise with a = 1.2 still permits relatively frequent transitions, but the
overall activity is markedly lower than in the uncorrelated regime. These findings illustrate that temporal correlation suppresses
noise-driven transitions, especially when the noise becomes more Gaussian in character.

A direct comparison between correlated and uncorrelated noise regimes reveals a rich interplay between the statistical properties
of the noise distribution and its temporal coherence. In the uncorrelated case, decreasing a enhances transition activity due to the
increased probability of large, instantaneous jumps. In the presence of correlation, however, these impulsive fluctuations are
dampened by memory, which smooths the noise and inhibits rapid transitions.

From a dynamical systems perspective, this suggests that correlation time acts as a form of inertia, limiting the effectiveness of
rare, large fluctuations in driving state changes. The relaxation time of the system, defines the timescale over which the
deterministic dynamics stabilize the particle within a well. When the correlation time t of the noise approaches or exceeds the
relaxation time noise-induced transitions become suppressed.
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These effects are consistent with classical and generalized stochastic theories. In the Gaussian case, transitions obey Kramers’ law
and are mediated by barrier crossing through diffusion. Lévy noise introduces a fundamentally different mechanism based on
spatial non-locality and heavy-tailed statistics, leading to transitions that occur through abrupt jumps. The inclusion of correlation
modulates both types of behavior by introducing coherence into the stochastic forcing, shifting the dynamics from being
dominated by instantaneous randomness to being governed by temporally extended fluctuations.

Table 1: Switching Statistics under Uncorrelated Noise

| Noise Type ||Mean Residence Time”Switch Count|
[Gaussian (a. = 2.0)|| 0.18 | 5560 |
| Lévy (a=18) || 0.15 | 6595 |
| Lévy (a=15) || 0.21 | 4859 |
| Lévy(@=12) || 0.31 | 3202 |

Table 1. Mean residence time and switch count for trajectories simulated under uncorrelated noise. Lower a values (heavier tails)
generally produce shorter residence times and faster transitions, though switch count decreases at very low a due to overshooting
effects.

Table 2: Switching Statistics under Correlated Noise

| Noise Type ||Mean Residence Time”Switch Count|
|Gaussian (a. = 2.0)|| 0.19 | 5385 |
| Lévy(a=1.8) || 0.15 | 6842 |
| Lévy (@=15) || 0.21 | 4817 |
| Lévy(@=12) || 0.30 | 3285 |

Table 2. Mean residence time and switch count for simulations using temporally correlated noise. Correlation suppresses
switching, especially for Gaussian and near-Gaussian Lévy noise, resulting in longer residence durations and fewer transitions.
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Figure 1. Sample trajectories of the bistable system under uncorrelated noise. Gaussian noise (o = 2.0) results in frequent, smooth
transitions. As o decreases, trajectories exhibit increasingly abrupt, large jumps characteristic of Lévy flights.
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Figure 2. Mean First Passage Time (MFPT) as a function of the stability parameter a for uncorrelated Lévy noise. Lower a values
produce shorter MFPTs due to the increased frequency of large noise-induced jumps.
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Figure 3. Sample trajectories of the bistable system under correlated noise (finite correlation time t). Correlation significantly
suppresses switching events and increases the duration of residence in potential wells.
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Figure 4. Mean First Passage Time (MFPT) as a function of a for correlated Lévy noise. In contrast to the uncorrelated case,
MFPT increases with a due to the temporal memory of the noise inhibiting rapid transitions.
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To further explore how temporal memory modulates transition dynamics, we analyzed the dependence of the mean first passage
time (MFPT) on the noise correlation time t for Lévy noise with a fixed stability index o=1.5. As shown in Figure 5, the MFPT
remains relatively low and stable for small 7, indicating that weakly correlated noise preserves the transition-enhancing effect of
Lévy fluctuations. However, as 1 increases beyond a critical threshold (approximately t~10), the MFPT rises sharply, eventually
plateauing at a significantly higher value. This sharp transition reflects the suppression of abrupt jumps due to the increasing
temporal coherence of the noise signal.

MFPT vs. Noise Correlation (Lévy, a=1.5), correlated noise
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Figure 5. Mean First Passage Time (MFPT) as a function of noise correlation time t for Lévy noise with stability index o=1.5. At
low correlation times, the system exhibits rapid transitions due to the dominance of large, abrupt Lévy jumps. As 1 increases,
temporal correlation suppresses these impulsive fluctuations, leading to a sharp rise in MFPT.

V. CONCLUSIONS

The results obtained here have broad relevance for systems where noise-induced transitions govern dynamical behavior, such as
in chemical reactions, climate dynamics, population ecology, neuroscience, and financial systems. Many real-world systems are
exposed to noise sources that are not only non-Gaussian but also exhibit temporal memory. The findings demonstrate that both
the distributional properties (e.g., tail behavior) and the temporal correlation of the noise must be taken into account to correctly
predict transition rates, stability, and switching patterns.

Furthermore, these results validate the scaling relations predicted by theoretical models and extend them into the non-Markovian
regime. They emphasize the need for simulations when analytical approaches become intractable, particularly in systems driven
by fractional or correlated stochastic processes.

Overall, the study highlights the critical role of noise characteristics in shaping the behavior of bistable systems. It confirms that
Lévy noise accelerates transitions through large jumps, while correlation acts to suppress such transitions. Their combined effect
gives rise to rich, nonlinear behavior that merits further exploration, both numerically and theoretically.
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