
                     International Journal of Progressive Sciences and Technologies (IJPSAT) 
                     ISSN: 2509-0119.  
                     © 2025 Scholar AI LLC. 
        https://ijpsat.org/                                                      Vol. 49 No. 1 February 2025, pp. 583-599 

 
 
Vol. 49 No. 1 February 2025               ISSN: 2509-0119 583 

 Wind Turbine Power Forecasting Using ANN, KNN, SVM, and 
Linear Regression Models  

 Jean Marc Fabien Sitraka Randrianirina, Bernard Andriamparany Andriamahitasoa, RAKOTOMALALA 
Noelinihaja Solofoniaina Lovasoa Feno Fanantenana, Zely Arivelo Randriamanantany  

 Laboratoire de Thermodynamique, Thermique et Combustion (LTTC), Université d’Antananarivo, MADAGASCAR  

 

 

Abstract – The prediction of wind turbine active power is crucial for the efficient management of renewable energy. This study analyzes 
the application of several machine learning models to predict the active power of wind turbines. The ANN, KNN, SVM, and linear 
regression models are trained with meteorological data to assess their accuracy. The analysis of the results shows that artificial neural 
networks (ANN) provide the best performance (RMSE: 0.0732), while linear regression has limitations. Improving the models requires 
the integration of new variables and the optimization of hyper parameters to refine the prediction. 
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I. INTRODUCTION 

 Wind energy is a renewable source. Weather conditions cause variability in wind turbine production. Predicting active power 
helps optimize wind farm operations. Traditional forecasting models have limitations in dealing with wind variations. Machine 
learning leverages meteorological data to improve energy forecasting [1], [2].  

Researchers adopted SVMs in 2000 to enhance wind power prediction by overcoming the limitations of neural networks [3]. Set 
models, such as random forests and gradient boosting, emerged in the 2010s [4]. In 2021, a study proposed an innovative method 
combining fuzzy inference systems and neural networks [5]. Another study predicted wind energy using machine learning 
models, including neural networks and random forests, following the CRISP-DM approach [6].  

In 2023, a study evaluated four artificial intelligence approaches for wind energy prediction in Yalova, Turkey, finding that SVM 
outperformed other models with an MAE of 71.21 and an R² of 0.95 [7]. In 2024, a study examined the application of artificial 
intelligence in offshore wind systems [8].  

This study applies multiple machine learning models to wind power forecasting. The models analyzed include Artificial Neural 
Networks (ANN), k-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Linear Regression. The objective is to 
evaluate their ability to estimate wind power generation. These principles aim to optimize wind farm energy management and 
enhance renewable energy forecasting tools. 

 II. DATA USED AND PREPROCESSING  

The wind turbine has a rated capacity of 3618.73kW. It operates optimally at a wind speed of 7.10m/s and reaches peak 
performance at 13m/s. Its rotor diameter is approximately 120meters, covering a swept area of 11,310m².  

The turbine weighs 120tons, ensuring structural stability. It features three fiberglass-reinforced composite three (3) blades for 
durability and efficiency. The slot less, permanent magnet, brushless generator ensures reliable power production. It runs on a 
120/240VAC supply with a frequency range of 59.3 to 60.5Hz.  
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Data is collected over a one-year period. These 80% of data are used to train the model, meaning to adjust the model's parameters 
based on the characteristics of the data. The remaining 20% are used to test the model after training, allowing for the evaluation of 
its performance on unseen data, which provides insight into its ability to generalize.  

The data processing is performed every ten minutes (10) and includes four time-stamped variables:  

 Date/Time: Each record is timestamped.  
 LV Active Power (kW): The actual active power generated by the wind turbine, expressed in kilowatts.  
 Wind Speed (m/s): Wind speed measured in meters per second.  
 Theoretical Power Curve (kWh): The theoretical power curve estimating the energy produced.  
 Wind Direction (°): Wind direction recorded in degrees.  

 

 

Figure 1: Evolution of wind speed and direction 

 

Before applying the machine learning algorithms, it is important to download, clean, and prepare the datasets to handle 
missing values, duplicates, and categorical variables. Dimensionality reduction using PCA and visualization with t-SNE help 
facilitate the analysis of complex data structures. The K-Means and DBSCAN algorithms are used to cluster the data, while ANN, 
KNN, SVM and linear regression handle classification and prediction Exploratory analysis uses boxplots and statistical functions 
to examine the distribution and relationships between variables. Identifying and processing variable types facilitate the encoding 
and transformation of the data. Managing missing values and outliers enhances data quality before training the models. 

 

III. MÉTHODOLOGY OF MACHINE LEARNING MODELS  

Before processing the datasets, the data standardization method is used to ensure data quality and consistency. 

 

Where 𝑋(𝑖,𝑗): Standardized value of a variable, 𝑥(𝑖,𝑗) is the value of an explanatory variable (𝑗=3), 𝜇𝑥 is the mean of the variable 𝑥(𝑖) 
et 𝜎𝑥: is the standard deviation of the variable 𝑥(𝑖). 
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The machine learning models used in this study include both supervised and unsupervised approaches, as well as dimensionality 
reduction techniques. 

 

III.1. Principal Component Analysis (PCA) and T-Distributed Stochastic Neighbor Embedding (T-SNE)  

Table 1 compares PCA and t-SNE. It highlights their approaches to data reduction, preservation of local relationships, and 
responsiveness to outliers. 

Tableau 1 : Comparison between PCA et t-SNE 

 

 

Figure 2 compares two dimensionality reduction methods (PCA and t-SNE). The colors indicate a continuous variable, ranging 
from purple (low values) to yellow (high values). With PCA, the data is distributed according to the principal components. In 
contrast, t-SNE forms distinct clusters, reflecting better non-linear separation of the underlying structures. 

 

 

Figure 2 : Comparison between PCA and t-SNE 

III.2. K-Means et DBSCAN (Density-Based Spatial Clustering of Applications with Noise)  

The table below highlights the key differences between K-Means and DBSCAN in terms of approach type, cluster management, 
and noise sensitivity. 
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Tableau 2 : Comparison between K-Means and DBSCAN. 

 

 

 

 

 

 

 

 

Figure 3 illustrates the comparison of datasets between k-means and DBSCAN. The k-means clustering segments the data into 
three distinct groups: yellow for high power values, purple for intermediate values, and green for low values (showing a 
correlation between wind speed and active power). DBSCAN clustering identifies two main groups: blue for the majority of 
points following a linear trend and orange for another group, while isolated points are considered noise. 

 

Figure 3 : Comparison between k-Means and DBSCAN 

 

III.3. Réseaux de Neurones Artificiels (ANN)  

Artificial neural networks are generalizations of mathematical models [11]. As shown in Fig. 4, they have a parallel and 
distributed processing structure [9]. Signals are transmitted between neurons via these connections, with each link applying a 
weight to the transmitted input. Each neuron uses an activation function (often non-linear) to transform its net input into an output 
signal. 
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Figure 4 : Training Process of an Artificial Neural Network 

 

 
Figure 5 : Features of the network optimized with ANN 

 
In our case, the model (fig.5) uses three hidden layers for regression. The first hidden layer has 16 neurons to capture non-
linearities. The second hidden layer contains 8 neurons and 4 neurons to prevent overfitting. The output layer includes 1 neuron 
for single-value prediction.  
A moderate number of layers and neurons effectively models complex relationships without the risk of overfitting. An overly 
complex architecture can lead to overfitting on the 50,530 data points.  
This activation function (3) in the hidden layer allows the model's outputs to fall within an interval between 0 and 1. This is 
particularly relevant for binary classification problems, as well as for the activation of neurons within each layer of the network. 
 

 
 
Where 𝑃𝑚𝑎𝑥 is the maximum standardized value observed in the data, 𝑣𝑐 is the point where the standardized power reaches 
approximately 50% of 𝑃𝑚𝑎𝑥, and 𝑘 controls the rate. 
 

 



                     International Journal of Progressive Sciences and Technologies (IJPSAT) 
                     ISSN: 2509-0119.  
                     © 2025 Scholar AI LLC. 
        https://ijpsat.org/                                                      Vol. 49 No. 1 February 2025, pp. 583-599 

 
 
Vol. 49 No. 1 February 2025               ISSN: 2509-0119 588 

If 𝑘>1, it indicates a rapid transition (the power moves from low to maximum), while if 𝑘<1, the transition is slow (the power 
increases gradually). After standardizing the datasets, the correlation matrix is shown in Fig. 5. 
 

 

Figure 6 : The correlation matrix with ANN 

 

III.4. Support Vector Machine (SVM)  

SVM is a supervised learning algorithm that seeks to find an optimal hyperplane separating the data classes. It maximizes the 
margin between the closest points of opposite classes (support vectors). The decision function is based on a kernel that transforms 
the data into a higher-dimensional space to improve separability [9], [10]. 

 

Figure 7 : Support vector regression hyperplane and decision boundaries. 

 

 

Where 𝑥𝑖 is the standardized wind speed, 𝑥 is a new standardized wind speed value, bb is the model's bias (improving the 
prediction), and 𝑦 is the predicted standardized active power. 𝐾(𝑥𝑖,𝑥) is a kernel function that measures the similarity between an 
observed wind speed 𝑥𝑖 and a new wind speed 𝑥. 
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Where 𝛾 controls the complexity of the solution in non-linear kernels, 𝐶 controls the penalty for errors (𝜉𝑖+𝜉𝑖∗), and 𝜔 a vector of 
weights. 

 

After differentiating the Lagrangian with respect to 𝜔, we obtain the relation (10): 

 

In our case, 

 

 

The value of the standardized matrix 𝑋 is: 

 

And 𝑏 = 0.043266308382584225  

From which, 

 

 

 

III.5. K-Nearest Neighbors (KNN)  

KNN is a non-parametric approach based on the similarity between data points [12]. A new sample is classified according to the 
majority of the k nearest neighbors in the feature space [13]. The performance of the model depends on the optimal choice of 𝑘 
and the distance metric used. 

 

 

Where 𝑥𝑖 is the standardized wind speed, 𝑥𝑗,𝑖 is a point among the k nearest neighbors, nn is the number of dimensions in the 
feature space, and 𝑥𝑖 and 𝑥𝑗,𝑖 represent the j-th components of 𝑥𝑖 and 𝑥𝑗,𝑖, respectively.  

The Euclidean distance is essential to define the proximity of points. Neighbors are those for which 𝑑(𝑥,𝑦) is minimal. 

To determine the predictions, the derivative of the Mean Squared Error (MSE) with respect to the predicted value is set to 0 (zero) 
to minimize the error. 
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D’où, 

 

 

Where 𝑦^𝑖(𝑥)is the predicted standardized active power, 𝑦𝑖 is the standardized wind speed associated with the neighbor 𝑥𝑖, and 
𝑁𝑘(𝑥)is the index of the 𝑘 smallest values of 𝑑(𝑥,𝑥𝑗). 

III.6. Linear regression  

Linear regression is a supervised model that establishes a relationship between a dependent variable and one or more independent 
variables by minimizing the Mean Squared Error (MSE) [14], [15]. It is used for prediction and trend analysis.  

The linear model is defined by the following formulas, depending on the nature of the parameters involved: 

 

We rewrite the function 𝑌 in matrix form as: 

𝑌=𝛽𝑋 

 

 

Where 𝑌 and 𝑦 are the standardized and non-standardized active powers, respectively, 𝑋1represents the wind speeds, both 
standardized and non-standardized, 𝑋2represents the wind directions, both standardized and non-standardized, and 𝑋3represents 
the nominal powers, both standardized and non-standardized.  

𝛽0,𝛽′0are the intercepts (biases), standardized and non-standardized, respectively, and 𝛽1,𝛽2,𝛽3,𝛽′1,𝛽′2,𝛽′3are the adjustment 
coefficients for each explanatory variable 𝛽1,𝛽2,𝛽3To determine the coefficient 𝛽, the quadratic error function must be 
minimized to find the best approximation of the output YY with respect to 𝛽: 

 

From which, 

 

 

Where 𝑋 is the matrix of explanatory variables 𝑋1,𝑋2𝑒𝑡𝑋3 and 𝑌 is the standardized active power 

 

In our case, we have: The value of the non-standardized matrix 𝑋 is: 
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The value of the standardized matrix 𝑋 is: 

 

 

From which, 

 

III.7. Évaluation et sélection du modèle  

At the end of the entire process, the most performant model is chosen to be deployed in production. Among those available, the 
coefficient of determination (R²), mean absolute error (MAE), and root mean squared error (RMSE) were selected for the 
evaluation step. 
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Where 𝑦𝑖 are the observed values, 𝑦̂𝑖 are the predicted values, and 𝑛 is the number of data points. 

IV. RESULTS AND DISCUSSIONS  

IV.1. Réseaux de Neurones Artificiels (ANN)  

The artificial neural network (ANN) regression model predicts the normalized active power 𝑌 based on the normalized wind 
speed and direction (𝑋1,𝑋2) (fig.8 and fig.9).  

In the fig.8, the real data show a dense distribution following a specific trend, illustrating the complex relationship between 
variables.  

The prediction surface demonstrates the model's ability to approximate this relationship, although discrepancies appear in certain 
regions. 

 

Figure 8 : Model 001 ANN (non-standardized) 

 

The prediction surface demonstrates the model's ability to approximate this relationship, although discrepancies appear in certain 
regions. The overall agreement between real data and the predicted surface validates the model's performance, but adjustments 
could improve accuracy in areas with high dispersion. 
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Figure 9 : Model 002 ANN (standardized) 

 

IV.2 Machine à vecteur de support (SVM)  

The SVM regression applied to wind turbine active power data as a function of wind speed and direction, with a colored scatter 
plot representing real data (fig.10 and fig.11).  

The surface represents the model’s prediction, showing a significant divergence from real data in certain value ranges, suggesting 
a suboptimal fit. The visible gap between experimental points and the predictive surface highlights the importance of data 
normalization to improve the SVM model’s performance. The analysis emphasizes the need for hyper parameter optimization or 
alternative models to better capture the nonlinear relationship between wind speed and active power. 

 

Figure 10 : Model 003 SVM (non-standardized) 
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The real data shows a general trend but remains widely scattered, indicating a complex relationship that the model attempts to 
approximate. The prediction surface appears smoother compared to KNN, suggesting that SVM captures global patterns rather 
than reacting to local variations (fig.10). 

 

 

 

Figure 11 : Model 004 SVM (standardized) 

 

IV.3. K-Nearest Neighbors (KNN)  

This graph 12 illustrates a KNN (k-Nearest Neighbors) regression on standardized data, where normalized wind speed and 
direction influence the active power output. The real data follows a general trend but with significant dispersion, indicating that 
the relationship between variables is nonlinear and sensitive to local variations. The prediction surface appears highly segmented, 
which is a typical characteristic of the KNN model, as it adapts locally to neighboring points rather than producing a smooth 
surface like parametric models. The irregular shape of the prediction suggests sensitivity to the choice of the number of neighbors 
(𝑘), a key parameter that influences the model’s generalization and requires optimal tuning to avoid overfitting or excessive 
approximation. 
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Figure 12 : Model 005 KNN (standardized)  

 

This graph 13 presents the KNN regression on non-standardized data, with the predicted active power (W) as a function of wind 
speed and direction. The real data follow a similar distribution to the previous graphs, but the KNN prediction surface appears 
more fragmented. The discontinuity of the predicted surface suggests that the KNN model struggles to capture the continuous 
relationship between variables, unlike the ANN model.  

This comparison shows that, without standardization, KNN regression is less effective and produces a less smooth approximation 
than ANN. 

 

Figure 13 : Model 006 KNN (non-standardized)  
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IV.4. Linear regression  

The graph illustrates a 3D linear regression model applied to standardized wind turbine active power data as a function of 
standardized wind speed and direction (fig14 and fig.15). 

The surface (fig.14) represents the prediction of the linear model, showing a significant deviation from the real data, indicating a 
poor fit for capturing the nonlinear behavior of wind power generation. The equation displayed suggests that the model assumes a 
linear relationship between the variables, which may not be sufficient to accurately represent the complexity of the real data. This 
analysis highlights the limitations of linear regression for this type of problem and suggests the need for more advanced models, 
such as nonlinear regression or machine learning approaches, to improve predictive accuracy. 

 

Figure 14 : Model 007 Linear regression (standardized) 

In the fig.15, the red prediction surface reveals a significant discrepancy from the real data, indicating that a simple linear model 
struggles to capture the complex relationship governing wind power generation. The equation provided assumes a linear 
dependence between the variables, which does not accurately reflect the nonlinear patterns observed in the real data distribution. 
This analysis reinforces the limitations of basic linear regression and suggests the necessity of more sophisticated approaches, 
such as polynomial regression or machine learning techniques, to improve predictive performance. 

 

Figure 15 : Model 008 Linear regression (non-standardized) 
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V. DISCUSSIONS  

Figure 18 compares the actual and predicted power values across several models, with the ANN displaying the lowest error 
(RMSE = 0.732). The dispersion of predictions is notable, especially for low and high power values, indicating modeling 
difficulties. Some models, such as linear regression, show higher errors and poorer generalization. The tendency toward 
underestimation or overestimation suggests a need for model and hyper parameter optimization. Improvements, such as adding 
new explanatory variables and post-processing corrections, could help refine prediction accuracy. 

 

Figure 18 : Actual vs predicted values for various models 

 

 

Figure 19 : Comparison of models (RMSE) 

 

The active power of wind turbines follows a sigmoidal curve as a function of wind speed. The active power is zero below 4 m/s, 
increases rapidly between 4 and 15 m/s, and then stabilizes at its maximum value beyond 15-20 m/s due to generator saturation. 
The linear regression model (red) fails to capture the sigmoidal shape and significantly overestimates the power at high wind 
speeds. Nonlinear models better follow the physical curve, but some, such as decision trees and KNN, exhibit abnormal 
oscillations, while ANN offers better stability. The variability in the predictions of decision trees and KNN suggests a lack of 
generalization and excessive sensitivity to the training data. The overestimation by linear regression proves its inadequacy for this 
type of nonlinear relationship. Errors at low wind speeds may indicate an issue with insufficient data in this range or a need for 
model improvements. 
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Figure 20 : Actual vs predicted values for multiples models 

 

VI. CONCLUSION  

The use of machine learning models enhances wind power forecasting by optimizing the operation of wind farms. Artificial 
neural networks (ANN) prove to be the most effective, while linear regression shows its limitations in capturing the nonlinear 
relationship between wind speed and energy production. Some models, such as KNN and decision trees, suffer from instability, 
highlighting the importance of rigorous hyper parameter tuning. To further improve prediction accuracy, the integration of new 
explanatory variables and the application of post-processing corrections are essential. A promising direction would be to explore 
advanced models to strengthen the robustness of predictions and optimize wind energy management. 
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