

Vol. 48 No. 2 January 2025, pp. 639-644

Regarding the Possibility of Calculating the Series of Silicides S_{298}^{0} Based on the Principle of Additivity

Tamar Kentchoshvili Georgian Technical Unievrsity

Abstract — The paper demonstrates the possibility of using the method of additivity of structural ingredients in determining the standard molar values of thermodynamic parameters. Using this method, the probability of determining silicides S_{298}^0 reaches up to one entropic unit.

Keywords - Entropy, thermodynamics, additivity, ingredient, molar, silicide, standard, structural.

Introduction

In the production of silicides, the primary reason for the low application of predictive methods and the creation of certain materials is the complexity of the physicochemical processes possible during synthesis. This circumstance may explain the increase in the duration of research work, as well as the material and energy intensity involved in seeking innovative solutions for silicide production.

Main Part

Chemical thermodynamics can provide invaluable assistance in reducing the amount of experimental work, as has been proven multiple times in solving highly complex scientific and practical problems. However, the full utilization of thermodynamic capabilities is often hindered by the lack of initial data necessary for analysis—specifically, the standard molar values of the thermodynamic parameters of silicides. According to our information, over 80 silicides currently lack such data. In most cases, they are characterized by incomplete data required for thermodynamic analysis and significant variability in parameter values. For instance, Table 1 contains information regarding $\Delta H_{f,298}^0$ gos S_{298}^0 , which is given in [1-3].

SSN:2509-0119

Vol. 48 No. 2 January 2025, pp. 639-644

Table 1. Data of several silicides - $\Delta \boldsymbol{H}^{\,0}_{f,298}$ and $\,S^{\,0}_{298}$

G.1 1		$\Delta H^0_{f,298}$ and S^0_{298}							
Silicides		$\Delta H_{f,298}^{0}$, kcal/m	ıol	S^0_{298} kcal/mol- \cdot K)					
	[1]	[2]	[3]	[1]	[2]	[3]			
CaSi	-	36,09	36,0	-	10,80	-			
Ca ₂ Si	50,0	49,95	50,0	-	19,04	-			
CaSi ₂	-	36,09	36,0	-	12,09	-			
CoSi	-	24,00	22,7	-	10,30	10,20			
Co ₂ Si	27,6	-	28,0	-	-	-			
CoSi ₂	-	24,59	23,6	-	15,32	15,30			
Cr ₃ Si	-	30,11	22,0	-	20,96	20,6			
CrSi	-	15,06	12,7	-	10,79	10,50			
CrSi ₂	-	22,94		-	13,97	14,0			
Cr ₅ Si ₃	-	64,05	50,50		43,44	40,40			
Fe ₃ Si	-	22,39	-	-	24,81	-			
FeSi ₂	18,20	19,41	-	13,29	15,33	-			
Fe ₂ Si	20,0	-	-	24,7	-	-			
Fe ₅ Si	46,0	-	-	50,0	-	-			
Mg ₂ Si	18,95	18,59	16,23	18,11	17,93	15,25			
MnSi	18,60	14,48	14,50	11,25	11,10	11,10			
Mn ₃ Si	26,50	19,02	19,0	24,95	24,97	24,80			
Mn ₅ Si ₃	-	47,99	48,0	-	57,11	57,0			
Mn ₂ Si ₇	20,0	18,07	-	13,26	13,40	-			
Mo ₃ Si	24,3	22,94	27,80	25,4	24,69	25,45			
MoSi ₂	28,40	27,96	31,50	-	15,54	15,55			
Mo ₅ Si ₃	-	20,60	21,40	-	11,21	10,60			
NiSi	-	20,6	21,40	-	11,21	10,60			

https://ijpsat.org/

Vol. 48 No. 2 January 2025, pp. 639-644

NiSi ₂	-	-	22,50	-	-	15,60
Ni ₂ Si	33,6	33,6	34,10	-	18,31	-
Ni ₃ Si ₂	-	-	55,5	-	-	-
TiSi	31,00	31,07	31,00	-	11,71	11,70
TiSi ₂	32,00	32,03	32,1	-	14,60	14,60
Ti ₅ Si ₃	139,0	-	138,0	-	-	52,10
ZrSi	35,0	37,05	35,5	-	13,91	-
ZrSi ₂	36,0	38,0	-	-	17,09	-
Zr ₃ Si ₂	92,0	-	-	-	-	-
Zr ₂ Si	50,0	49,95	81,0	-	23,90	-
Zr ₄ Si	51,0	-	-	-	-	-
Zr ₅ Si ₃	203,0	-	203,0	-	-	-
SrSi	45,0	-	-	-	-	-
Sr ₂ Si	60,0	-	-	-	-	-
SrSi ₂	45	-	-	-	-	-
V ₃ Si	25,0	41,20	-	27,0	23,47	-
VSi ₂	36,0	29,18	-	14,10	14,13	-
V ₂ Si	37,0	-	-	-	-	-
V ₅ Si ₃	112,0	-	-	-	-	-
W ₅ Si ₃	-	32,31	-	-	54,99	-
WSi ₂	-	21,99	-	-	15,30	-

In studying the processes occurring at the "glass coating – copper" interface, attention was drawn to the fact that during the firing of "raw" coatings, an intermediate layer may form on the surface of the copper, which could promote (or improve) the adhesion of the glass coating to the copper. To confirm this possibility, it was decided to thermodynamically evaluate various potential physicochemical processes, one of the products of which included silicides of different compositions. A major obstacle to realizing this sequence of processes was the lack of, or variability in, the values of the aforementioned thermodynamic parameters, particularly those of component S_{298}^0 . This prompted the search for calculation methods, which led us to the work of Georgian metallurgists [4]. The study [4] proposes a method for calculating the entropies of silicides (S_{298}^0), and by using this method, in some cases, we obtained fairly acceptable results—the error (probable deviation) did not exceed 2-3 entropic units.

https://ijpsat.org/

SSN:2509-0119

Vol. 48 No. 2 January 2025, pp. 639-644

A subsequent attempt involved applying the method of additivity of structural ingredients, which had previously been used for calculating the standard molar thermodynamic parameters of silicates and borates [5-9], with appropriate modifications based on the nature of the research objects. The calculations were based on classifying the silicides according to bond type, and instead of "structural ingredients," the atoms constituting the silicide were used. The calculation process and the results for ionocovalent bond silicides and certain metallic-like silicides are presented in Tables 2 and 3.

Table 2. $S_{298}^{\,0}$ calculation procedure of ionic-covalent silicides and calculation results

	Standard values	Calculation	S^{0}_{298}	Leveling	S^{0}_{298}	Δ=
	[1-3]	values S_{298}^0	(standard)/	coefficient -K ₁	(calculation)X	S_{298}^{0}
Silicides	S^{0}_{298} (standard)	(calculation)	S_{298}^{0}		$K_l=$	(standard)-
	kcal/mol •K	kcal/mol •K	(calculation)		S_{298}^{0} (basic)	S_{298}^{0} (basic)
			K(c)		kcal/mol •K	kcal/mol •K
1	2	3	4	5	6	7
Ca ₂ Si	19,04	24,30	0,7835		19,95	-0,91
Mg ₂ Si	17,10	20,12	0,8499		16,43	0,67
Sr ₂ Si	-	29,50	-	0,8167	24,09	-
Ba ₂ Si	-	34,52	-	0,8167	28,19	-
		Silicides w	rith Si chains (R	Si)		
CaSi	10,8	14,40	0,7500	0,7500	10,8	0
Sr ₂ Si	-	17,00	-	0,7500	12,75	-
Ba ₂ Si	-	19,51	-	0,7500	14,63	-
		Silicides with c	orrugated layers	s (RSi ₂)		
CaSi ₂	12,09	18,90	0,6397	0,6397	12,09	
SrSi ₂	-	21,50	-	0,6397	13,75	-
BaSi ₂	-	24,01	-	0,6397	15,36	-

ISSN: 2509-0119

Note: In the case of RSi and RSi2, the calculation was made using a single "standard", so errors are possible.

Vol. 48 No. 2 January 2025, pp. 639-644

Table 3. Procedure for calculation of metal-like silicides $\,S_{298}^{\,0}\,$ and results of this calculation

Silicides	Standard values [1-3] $S_{298}^{0}_{\text{(standard)}}$ kcal/mol •K	Calculation values $S^{0}_{298}_{(calculation)}$ kcal/mol •K	S ⁰ ₂₉₈ (standard)/ S ⁰ ₂₉₈ (calculati on)= K(c)	Leveling coefficient - K ₁	S_{298}^{0} (calculation)× $K_{l}=$ S_{298}^{0} (basic) kcal/mol •K	$\Delta=$ S_{298}^{0} (standard)- S_{298}^{0} (basic) kcal/mol •K
1	2	3	4	5	6	7
TiSi	11,71	11,82	0,9907		11,21	0,5
MnSi	11,10	12,15	0,9114		11,53	-0,43
FeSi	10,99	11,02	0,9973		10,45	0,54
CoSi	10,30	11,68	0,8818		11,08	-0,78
NiSi	11,21	11,65	0,9622		11,05	0,16
CuSi	-	12,42	-	0,9487	11,78	-
ZnSi	-	14,45	-	0,9487	13,71	-
VSi	-	11,41	-	0,9487	10,82	
CrSi	(10,47)	10,18	-	0,9487	9,66	-
		RSi ₂ types of	of silicides	I	I	I
TiSi ₂	14,6	16,32	0,8952		15,44	-0,84
CrSi ₂	13,97	14,18	0,9852		13,41	0,83
CoSi ₂	15,32	16,18	0,9468		15,89	-0,57
NiSi ₂	15,60	16,14	0,9559		15,26	0,34
MnSi ₂	-	16,65	-	0,9458	15,25	
FeSi ₂	(13,29)	15,52	-	0,9458	14,68	-
VSi ₂	-	15,91	-	0,9458	15,05	-
ZrSi ₂	-	18,95	-	0,9458	17,92	-
CuSi ₂	-	16,92	-	0,9458	16,00	-

Note: In our opinion, $S_{298,Cr,Si}^0$ S_{298,Fe,Si_2}^0 values need to be revised. Therefore, these silicides are excluded from the number of "standards".

Vol. 48 No. 2 January 2025, pp. 639-644

Conclusion

SSN-2509-0119

As it follows from the data presented in Tables 2 and 3, the used method makes it possible to obtain S_{298}^0 values that differ from the standards by no more than 1 kcal/mol •K. Verification of the admissibility of S_{298}^0 values of the silicides determined by this method for the thermodynamic analysis of the possible processes at the separation surface of the glass coating with copper showed a satisfactory agreement between the results of this analysis and the experimentally obtained ones.

References

- [1]. Термодинамические константы веществ. Под ред. В.П. Глушко и др. Вып. І-Х. М.: АН СССР, 1965-1981
- [2]. Hharumi Jokokawa. Tables of Termodynamic Properties of Inorganic Compounds //J. Nat. Chem. Lab.Ind., vol 83, 1988. -121 p.
- [3]. 3.О.Кубишевский, С.Б. Олкок. Металлургическая термохимия М.: Мета¬ллургия, 1982,с. 208-385.
- [4]. G.G. Gvelesian, D.I. Bagdavadze. Methods of Calculating Thermodynamic Functions of Inorganic Substances and their Use in Complete Thermodynamic Analysis of Metallurgical Processes. Tbilisi: Universal, 2006 p. 128
- [5]. A.V. Sarukhanishvili, L. Matsaberidze. An Additive System of Structural Ingredients for the Calculation of Standard Molar Values of Thermodynamic Parameters of Anhydrous Silicates. Proceedings, GTU, No. 4(478), 2010, p. 29-33
- [6]. A.V. Sarukhanishvili, N.J. Rachvelishvili, V.G. Gordeladze. Using the Structural Component Additivity Method, to Calculate the Standard Molar Values of the Thermodynamic Parameters of a Number of Borates. //Chemistry. Journal of Georgia. Vol. 11, No. 3. 2011. pp. 308-311
- [7]. Саруханишвили А.В., Горделадзе В.Г., Кенчошвили Т.Л. Расчёт термических констант минералов группы граната методом аддитивности структурных ингредиентов. Журнал Ассоциации керамистов Грузии. Т.20. №2 (40). 2018.с. 25-30.
- [8]. A. Sarukhanishvili, T. Kenchoshvili. About a Number of Issues of Thermodynamic Evaluation of Chemical Reactions Using Databases. Chemistry Journal of Georgia, Vol. 18, #1. 2018. p. 88-93.
- [9]. Marekhi Ghibradze. Prediction and Synthesis of Compositions of Coatings on Copper in Na₂O-SrO-BaO-B₂O₃-SiO₂ System. Dissertation submitted for the academic degree of Doctor. Tbilisi. GTU. 2020. p. 56-60.

Vol. 48 No. 2 January 2025 ISSN: 2509-0119 644