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Abstract— This research develops a combination model of Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM) for the identification and classification of objects in sonar images, applied in the context of maritime defense and security. CNN
is used to extract spatial features from sonar images, while LSTM processes the temporal sequences of these features to enhance the
accuracy of underwater object classification. The dataset used consists of eight object classes: shipwrecks, plane wrecks, drowning
victims, bottles, propellers, submarines, mines, and tires. The model was trained and tested using normalized and augmented data to
enhance the variation and quality of the training data. The evaluation results show that the CNN-LSTM model achieves high accuracy
in classifying underwater objects. At the end of the training, the training and validation accuracy reached 100% after 100 epochs,
demonstrating the model's excellent ability to generalize knowledge from training data to unseen data. Additionally, the consistently
decreasing loss value during the training process indicates the model's effectiveness in reducing prediction errors. This research proves
that the combination of CNN and LSTM is an effective approach for identifying and classifying underwater objects in sonar images.
With these promising results, the CNN-LSTM model has the potential to be implemented in real-world applications, supporting efforts
to detect and identify underwater objects quickly and accurately, and contributing to the enhancement of maritime safety and security.
This research makes a significant contribution to the development of underwater object detection and identification technology, which
is crucial for maritime defense and security.

Keywords— Convolutional Neural Network, Long Short-Term Memory, Sonar Imaging, Object Identification, Object Classification,
Maritime Defense, Maritime Security.
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I. INTRODUCTION

Maritime defense and security are crucial elements in maintaining the sovereignty of maritime areas and protecting strategic
assets in the waters. Threats from underwater objects such as mines [1] [2] [3], submarines [4] [5], and marine debris [6] [7]
necessitate a reliable detection and identification system. Sonar technology, which uses sound waves for navigation [8],
communication [9], and detecting underwater objects [10], is highly relevant in this context. However, the main challenge is how to
identify and classify objects with high accuracy in various complex marine environmental conditions.

The use of sonar images in the identification of underwater objects has become standard in military and civilian operations.
However, the interpretation of complex sonar images is often influenced by various factors such as noise [11], image resolution
[12], and underwater environmental conditions [13]. Deep learning, particularly CNN and LSTM, offers solutions to enhance the
accuracy of underwater object identification and classification by optimizing the processes of spatial and temporal feature
extraction and analysis.

This research aims to develop a program for object identification and classification in sonar images, specifically applied in
maritime defense and security. The proposed approach combines Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM) to leverage the strengths of each model in extracting spatial and temporal features from sonar images. CNN is
one of the Deep Learning (DL) models used in image analysis for tasks such as image classification, segmentation, detection,
registration, and content-based image retrieval [14]. Applying CNN in processing sonar images can be achieved using an active
learning-based algorithm that seeks informative images from unlabeled data and continuously retrains the model [15]. The use of
CNN in processing sonar images can improve accuracy in object matching in deep ocean environments with dynamic
backgrounds, high intensity, and high noise levels [16]. One of the advantages of CNN is its ability to extract features from
images with high accuracy [17]. Therefore, in this study, the CNN model is used to extract important features from sonar images.

Next, the feature extraction results from the CNN model are then processed with the LSTM model to handle the temporal
sequences of these features to improve classification accuracy. LSTM is a Deep Recurrent Neural Network architecture used to
extract dependencies from sequential data [18], such as time-series data classification [19] using an LSTM encoder-decoder
model to reconstruct the input sequence [20]. This model is also capable of capturing temporal dependencies and evolution
patterns in dynamic networks [21], resulting in more accurate predictions and visualizations of image data [22]. The selection of
the LSTM model is due to its ability to model complex evolution patterns behind spatiotemporal time series. Whereas traditional
feedforward neural networks cannot understand the complex interactions occurring between various locations in different time
series [23].

Advanced underwater object identification and classification systems can identify potential threats earlier [1], allowing for
faster and more effective preventive measures. In addition, this system can also support search and rescue operations for drowning
victims [24] as well as other civil applications that require accurate underwater monitoring. In the long term, the development of
this technology will contribute to the enhancement of maritime safety and security as well as support efforts to maintain the
sovereignty of territorial waters. Therefore, using DL models such as the combination of CNN-LSTM in this research is expected
to enhance the capability of underwater object detection, utilize temporal information to improve classification accuracy, and be
implementable in real-world applications for maritime defense and security. This research holds high significance in the context
of maritime defense and security.

Research method

This research develops a program for object identification and classification in sonar images for maritime defense and security
using a combination of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). This model is designed to
extract spatial features from sonar images through CNN and process the temporal sequences of these features with LSTM to
enhance classification accuracy.
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Fig 1. CNN-LSTM Model Architecture
A. Data Collection

The dataset used in this research consists of sonar images containing various underwater objects such as mines, submarines, and
other sea debris. This data was collected from various sources that provide sonar images in RGB format with a size of 128x128
pixels. The training data used consists of eight object classes: shipwrecks, plane wrecks, drowning victims, bottles, propellers,
submarines, mines, and tires. The entire dataset is divided into training data (70%) and test data (30%).

B. Data Pre-processing

The preprocessing stage includes normalization and data augmentation. Normalization is performed by changing pixel values to
the range [0, 1] to accelerate model convergence, reduce computational resources, and improve accuracy [25]. Data augmentation is
carried out to increase the variation of training data and includes operations such as rotation, flipping, and image translation [26]

C. Model Architecture

The developed model consists of two main components: CNN for extracting spatial features and LSTM for processing the
temporal sequence of those features The model architecture is shown in Fig 1.

1) Input Layer

The input layer receives sonar images with a size of 128x128 pixels in RGB format, which means each image has three
color channels. (merah, hijau, biru). Input shape for this model is (128,128, 3).

2) First Convolutional Layer

The convolutional layer in the CNN architecture helps automatically learn features from images using training data and
high computational resources such as GPUs [27]. The first convolutional layer aims to extract basic features from sonar
images. In this layer, 32 convolutional filters with a size of 3x3 and the ReLU activation function are used. The padding
used is "same," which means the output has the same size as the input.

e Convolutional Operation

k—1k—1

FrDCoy) = ) D FQ) - IX +iy+)) m

i—0 j=0

Where F is the convolution filter, I is the input image, k is the filter size, and (x,y) is the position in the output
image.
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e ReLU Activation Function

ReLU(x) = max (0,x) (2)

This function is used to introduce non-linearity into the model [28].

3) First Pooling Layer

The pooling layer is a spatial down-sampling layer that gradually reduces the feature map, increases the receptive field
size, and decreases the number of parameters in the model [29]. The first pooling layer serves to reduce the spatial
dimensions of the image, thereby reducing the number of parameters and computations in the network. In this layer, max
pooling operation with a size of 2x2 is used. Max Pooling Operation:

P(x,y) = (Ii}}%f(XJrE,y +J) 3)

Where R is the Pooling area and P is the pooling result.

4) Second Convolutional Layer

The second convolutional layer aims to extract more complex features from the sonar image. In this layer, 64
convolutional filters with a size of 3x3 and the ReLU activation function are used. The padding used is also "same."

e  Convolutional Operation

k—1k—1

FrDCoy) = ) D FQ) - IX +iy+)) @

i—0 j=0

e ReLU Activation Function

ReLU(x) = max (0,x) (5)
5) Second Pooling Layer

The second pooling layer is used to further reduce the spatial dimensions of the image. A max pooling operation with a size
of 2x2 is also applied in this layer. Max Pooling Operation:

P(x,y) = (E}?gtl(x +i,y+)) (6)
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6) Flatten Layer

The Flattened layer converts the output from the second pooling layer, which is in the form of a two-dimensional matrix,
into a one-dimensional vector. This is necessary so that the data can be input into the LSTM layer. The Flatten operation is

as follows:

Flatten(x) =[xy, x5, ..., X, |

(7

7) Repeat Vector Layer

The Repeat Vector layer repeats the input vector (Flatten) so that it can be fed into the LSTM layer as a temporal
sequence. For example, if we want to have 10 timesteps, the input vector will be repeated 10 times.

ReperatVector (x) = [x, x, ..., x] (10 times) (®)

8) First LSTM Layer

The first LSTM layer is used to process the temporal sequence of features extracted by the CNN. This layer consists of
32 units with return_sequences=True, which means the output from each timestep will be passed to the next timestep. Each
timestep in this sequence is processed by the LSTM units shown in Fig. 2.

Cell State
Memory
o Y T “,
f;:(l)
Input A e
Sigmoid Sigmoid
4 A 4

Fig. 2 First LSTM Layer

At each timestep ¢, the LSTM receives input data X; and the hidden state hg?l from the previous timestep. Along with

that, the previous cell state th)l is also included. The first process that occurs is the calculation of the input gate (1 L'El)),
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which determines how much new information will be stored in the cell state. This input gate uses weights W_xi*((1)) and

VVh(il) as well as bias b}.(l), and the result is activated by the sigmoid function.

= ot WOHD, + 1) N

Next, the forget gate (f;(l)) is calculated to determine how much information from the previous cell state th)l will be
discarded. Like the input gate, the forget gate uses weights W-’;C(fl )and Wh(;)as well as bias b}El), and is activated by the

sigmoid function.

1
19 = oW+ WP D, + bt (10)

Then, the candidate cell state ( c t(l)) is calculated. This is the new value proposed to be added to the current cell state.

Candidate cell state is calculated using weights W;(Cl)and Wh(cl )as well as bias bgl), and the result is activated by the tanh
function to produce values between -1 and 1.

ft(l} = tanh(l/lf;%)xt + Wh%)hgi}l + bgl)) o

With information from the forget gate and candidate cell state, the current cell state CT_(I) is updated. The forget gate
) (D)

f;( ) determines the portion of the previous cell state C E,] that is retained, while the input gate I regulates how much

new information from the candidate cell state C't(l} is added to the current cell state. The result is the updated cell state

c.

1 _ D (v (1) =(1)
Cm = fo Gy + i G (12)

1) . . . . .
Next, the output gate (Ot( )) is calculated to determine how much information from the current cell state will be

produced as the hidden state. This output gate uses weights Wx&l) and VVJ,?(nl )as well as bias bgl), and is activated by the

sigmoid function.

Ot(l) = O'(M’Sc%)xt + Wh%)hgi)l + bgl)) (13)
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Finally, the hidden state (hfl)) is calculated by combining the current cell state Ct(l) modulated by the output gate or

through the tanh function. This hidden state hgl)

network.

is then used as input for the next timestep or as the final output of the

Y = 0™ tanh(c V) .

9) Second LSTM Layer

The second LSTM layer consists of 16 units and does not use return_sequences=True, which means only the output from
the last timestep will be passed to the next layer. The second LSTM layer receives the output from the first LSTM layer as
input. The process is similar to the first LSTM layer, but with different parameters.

Cell State
Memory o Ct(Z)

(2) +(2)
fe It < |
&
Input . .
Sigmoid Sigmoid tanh Sigmoid
r 3
2)
Hidden (2) - = h’g
State i Forget Gate . Input Gate | Output Gate

| !
\ P LY LY £

Fig. 3 Second LSTM Layer

At each timestep #, LSTM Layer 2 receives input from the hidden state produced by First LSTM Layer hgl)and the

hidden state from the previous timestep on LSTM Layer 2 hE

3)1. Along with that, the previous cell state ngl is also
included. The first process that occurs is the calculation of the input gate iEz), which determines how much new
information from the hidden state of LSTM Layer 1 will be stored in the cell state. This input gate uses weights and Wx(iz)

and WG,(,-Z) as well as bias bf@), and the result is activated by the sigmoid function.

il = oW Px + WIRZ, + b)) (15)
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Next, the forget gate (ﬁ(2 )) is calculated to determine how much information from the previous cell state € E?] will be

discarded. Like the input gate, the forget gate uses weights W;Eg ) and W;f? ) as well as bias bIEZ), and is activated by the

sigmoid function.
P = oW @n® + w2r?, + b®) (16)

. ~(2) . ..
Then, the candidate cell state (Ct( J') is calculated. This is the new value proposed to be added to the current cell state.

Candidate cell state is calculated using weights I’l’;(g) and Wh(g ) as well as bias bgz), and the result is activated by the
tanh function to produce values between -1 and 1.

C® = tanh(mﬁ)hgl) + WP, + bgz)) (17)

With information from the forget gate and candidate cell state, the current cell state t&}is updated. The forget gate ]‘;[2)
:(2)

determines the portion of the previous cell state (C E?]) that is retained, while the input gate i, “regulates how much new

information from the candidate cell state C t(z} is added to the current cell state. The result is the updated cell state Ez).

Ct@) _ f;@) . Ct(E)l T L'gz) . ét@) (18)

2)\ . . . . .
Next, the output gate (Ot( )) is calculated to determine how much information from the current cell state will be

produced as the hidden state. This output gate uses weights W;EJZ) and W;E) as well as bias b ‘52), and is activated by the
sigmoid function.

0 = o (W' + W, h, + ") (19)

Finally, the hidden state (hgz)) is calculated by combining the current cell state Ct(z) modulated by the output gate

2 . L . . .
ot( ) through the tanh function. This hidden state hgz) is then used as input for the next timestep or as the final output of

the network.

h® = 0@ tanh(c?) (20)
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10) Output Layer

The output from the second LSTM layer is fed into the Dense layer with a softmax activation function to produce
classification predictions:

Dense = sof tmax (W, - hgz) + by) 21)

softmax(z;) = (22)

e’

Where W, is the weight and b, is the bias for the Dense layer, and hgz) is the hidden state from the last timestep in the

second LSTM layer, Z; is the i-th element of the input vector z. The softmax activation function transforms the output into
probabilities that sum to 1 [30].

D. Model Training

The model was trained using the backpropagation through time (BPTT) algorithm with the Adam optimizer [31]. The loss
function used is categorical cross-entropy [32], which is defined as:

£=— ylog)

(23)
Where y; is the actual value of class i. 9; is the predicted probability of class i.

II. RESULT AND DISCUSSION

The model developed in this study has been evaluated using a sonar image dataset consisting of eight object classes: shipwreck,
plane wreck, drowning victim, bottle, propeller, submarine, mine, and tire. This model was evaluated based on accuracy and loss
metrics on the test data. Here are the evaluation results of the proposed CNN-LSTM model.

A. Model Performance

The proposed model consists of several layers, namely the convolutional layer, pooling layer, flatten layer, repeat vector layer,
and LSTM layer. Each layer has a specific role in the feature extraction and object classification process. Here is a detailed
analysis of the performance of each layer:
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TABLE I. MODEL SUMMARY

Layer (type) Output Shape Param
Convolution 1 (Conv2D) (None, 128, 128, 32) 896
Max Pooling (MaxPooling2D) (None, 64, 64, 32) 0
Convolution 2 (Conv2D) (None, 64, 64, 64) 18496
Max Pooling (MaxPooling2D) (None, 32, 32, 64) 0
Flatten (Flatten) (None, 65536) 0
Repeat Vector (RepeatVector) (None, 10, 65536) 0
LSTM 1 (LSTM) (None, 10, 32) 8392832
LSTM 2 (LSTM (None, 16) 3136
Dense (Dense) (None, 8) 136
Total Param : 25246490
Trainable Param : 8415496

Non-trainable Param : 0
Optimizer Param : 16830994
B. Accuracy Result

The obtained accuracy data includes training and validation accuracy measured at each step or epoch during the training
process. This dataset shows how the model learns over time and its ability to generalize knowledge to previously unseen data.

Accuracy Result

e Training =7V alidation

Accuracy
=
(=3}

0.4

0 3 6 9121518212427303336394245485154576063 6669727578 81 848790939699
Epoch

Fig 4. Accuracy Result
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Fig 4. shows at the beginning of the training, the training accuracy started at a value of 0.100. This shows that the model
initially could only make correct predictions for 10% of the total training data. As the epochs increase, the training accuracy
begins to gradually improve. At epoch 2, the training accuracy rose to 0.16. The model continued to learn and began to capture
more information from the training data until it reached 0.985 at epoch 23. However, there was a slight decrease in training
accuracy from epoch 24 to 30 and from epoch 46 to 56, which could be caused by fluctuations in the learning process. The
training accuracy significantly increased to 1.00 and stabilized from epoch 56 to 100, indicating an improvement in the model's
ability to predict the correct class.

The validation accuracy at the beginning of the training is also low, starting at a value of 0.125. This indicates that the model
initially had poor performance in generalizing knowledge to the validation data. Validation accuracy provides an indication of
how well the model can generalize its knowledge to new data that is not included in the training data. Similar to training, at epoch
2, the validation accuracy increased to 0.23. The model began to learn to generalize its knowledge well, reaching 0.995 by epoch
22. However, there was a slight decrease in training accuracy from epoch 22 to 30 and from epoch 46 to 56, which could be due
to the model possibly having difficulty generalizing knowledge, but the values were still high compared to previous epochs,
indicating stability in learning. Fluctuations in validation accuracy indicate that the model is still in the adjustment phase and is
seeking a balance between overfitting and underfitting. Validation accuracy increased significantly to 1.00 and stabilized from
epoch 57 to 100. Despite the fluctuations, validation accuracy shows a stable upward trend, which is a positive indication of the
model's ability to generalize knowledge.

C. Loss Result

The data loss obtained includes the loss on the training and validation data measured at each step or epoch during the training
process. This dataset shows how the model learns and reduces its prediction errors over time.

Loss Result

e TrAiNINE  =—alidation

L= T = T R o BT T e B e B Y e B o T B o Y o LT o e B o
I T - - - LTS T S T S T Yo BT SR o T e e S R - o« - T = I = O = )

100

Epoch

Fig 5. Loss Result

Fig. 5 shows at the beginning of the training, the training loss value started at 2.155397, indicating that the model initially had a
very high prediction error. However, as the epochs increased, the training loss value gradually decreased, showing that the model
was learning and adjusting its weights to reduce prediction errors. At the second epoch, the training loss value decreased to
2.092412. This decrease indicates that the model is starting to learn the basic patterns from the training data and reducing its
prediction errors. At epoch 6, the training loss further decreased to 1.9542, indicating that the model is becoming better at capturing
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information from the training data. By epoch 23, the training loss gradually decreased to 0.227261, showing stability in the model's
learning process. At epoch 64, the training loss experienced a significant decrease to 0.029755. This decrease indicates an
improvement in the model's ability to predict more accurately, substantially reducing prediction errors. Overall, the decrease in
training loss values indicates that the model is able to learn well from the training data, improve its predictions, and adjust its
weights to minimize errors. The consistent decrease in training loss values indicates that the model is on the right track in the
learning process.

Meanwhile, the validation loss value indicates how well the model can generalize its knowledge to new data that is not included
in the training data. At the beginning of the training, the validation loss started at 2.104337, indicating that the model's prediction
error on unseen data was also very high. In the second epoch, the validation loss value decreased to 2.062312. This decrease
indicates that the model is beginning to learn to generalize its knowledge, although it is still in the early stages. In the third epoch,
the validation loss slightly decreased to 2.052337, indicating that the model is still in the process of learning to improve its
generalization ability. In the third epoch, the validation loss significantly decreased to 1.962931. This is a positive sign that the
model is starting to learn to generalize well, capturing important patterns in the validation data that are similar to the training data.
At the 70th epoch, the validation loss further decreased to 0.020384, indicating stability in learning and the model's ability to
generalize its knowledge better. The stable decrease in validation loss indicates that the model is capable of learning from the
training data and applying the acquired knowledge to make more accurate predictions on new data. This suggests that the model is
not only memorizing the training data but also understanding patterns that can be applied to previously unseen data.

D. Model Test Result

The results of the combination model of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) shown
in this analysis reflect significant advancements in object recognition and classification in the context of sequential data, such as
videos or image sequences. This model leverages the power of CNN in feature extraction from images, which is known to be very
effective in recognizing visual patterns [33], as well as the capability of LSTM in handling sequential data by storing temporal
information [34]. This combination creates a system that can not only recognize objects in static images but also understand the
surrounding temporal context, thereby enabling more accurate predictions in dynamic situations.

In the obtained results, the model in Fig. 6 shows very good performance with high accuracy across various object categories.
For example, categories such as "Aircraft Wreckage" and "Drowning Victims" recorded an accuracy of over 99%, indicating that
this model is capable of recognizing and classifying objects with a very high level of reliability. This is very important in real-world
applications, such as in search and rescue, where quick and accurate detection can save lives. Additionally, other categories like
"Bottle" and "Tire" also show very good results, with accuracy above 99%. This indicates that the model has been trained with
sufficiently representative and diverse data, allowing the system to capture the important features of each object well.

Airplane Wreck Airplane Wreck Min¢ Drowning Victim
99.04% B 59.14% 98.8 599.35%

Fig. 6. Model Test Result

However, despite the impressive results obtained, there are several categories that show slightly lower accuracy, such as
"Shipwreck" and "Submarine," each achieving an accuracy of around 98%. This decline may be caused by several factors, such as
the visual complexity of these objects, where the distinguishing features between categories may not be strong enough to allow the
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model to classify more accurately. Additionally, variation in the training data also plays a crucial role; if the data used to train the
model is not diverse or representative enough, the model may not be able to learn well to recognize objects under different
conditions.

From an application perspective, the combination of CNN and LSTM opens up great opportunities for various practical uses. In
the field of security monitoring, for example, this system can be used to detect and identify objects in videos in real-time, enhancing
surveillance efficiency. In the environmental sector, this model can assist in monitoring potentially hazardous objects, such as
hazardous waste or invasive species, by providing more accurate and timely information. With these promising results, the next
steps in this research could include further development of the training dataset to improve accuracy in more challenging categories,
as well as the exploration of new techniques in data augmentation to enrich the variety of images used. Thus, these results not only
demonstrate the remarkable potential of the CNN and LSTM combination model but also provide a solid foundation for the
development of more advanced and effective object recognition technologies in the future.

III. CONCLUSION

This research has successfully developed and evaluated a combination model of Convolutional Neural Network (CNN) and
Long Short-Term Memory (LSTM) for the identification and classification of objects in sonar images, specifically applied in the
context of maritime defense and security. This model is designed to extract spatial features from sonar images through CNN and
process the temporal sequences of these features with LSTM, aiming to improve the accuracy of underwater object classification in
various complex environmental conditions. The evaluation results show that the CNN-LSTM model is capable of achieving high
accuracy in classifying eight classes of underwater objects, including shipwrecks, plane wrecks, drowning victims, bottles,
propellers, submarines, mines, and tires. At the end of the training, this model showed a stable training accuracy of 100%, and a
validation accuracy that also reached 100% after 100 epochs. This indicates that the model has an excellent ability to generalize the
knowledge obtained from the training data to previously unseen data. Additionally, the consistently decreasing loss value during the
training process shows that the model is capable of effectively reducing its prediction errors.

Overall, this research proves that the combination of CNN and LSTM is an effective approach for the identification and
classification of underwater objects in sonar images. This model is not only capable of extracting important features from sonar
images but also utilizes temporal information to enhance classification accuracy. With these promising results, the CNN-LSTM
model can be implemented in real-world applications for maritime defense and security, supporting efforts to detect and identify
underwater objects more quickly and accurately, ultimately contributing to the improvement of maritime safety and security.
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