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Abstract—This paper presents singular value decomposition (SVD), a major technique to matrix decomposition. SVD functions as the 
fundamental scientific instrument of numerous applications including principal component analysis (PCA), matrix approximation, Eigen 
Value decomposition, Cholesky decomposition and others. SVD is operated in many applications for example data analysis, Netflix’s 
recommender method, Google’s PageRank algorithm, image compression, and dimensional reduction while retaining the most significant 
information. This paper indicates the mathematics following SVD in a modest way. Furthermore, it applies SVD method in dimensionality 
reduction and image compression as the essential technique of the data analysis.   
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I. INTRODUCTION  

Singular Value Decomposition (SVD) is extremely dynamic and broadly matrix decomposition system in computation [1]. It 
offers the support for almost all data investigation process in data science. SVD is applied to deliver a low rank approximation of 
several matrices of any structure. SVD approximation is assured to exist and mathematically stable decomposition method. SVD is 
regarded as the computational mechanism of many information driven algorithm and applications [2]. SVD is exploited in PCA, 
where high-ranked data is featured into statistically and principal designs of lower rank data. Although SVD is utilized to discover 
the pseudo inverse of a matrices, and to calculate Pre-determined and less-determined system of linear equations. SVD is often used 
as the original sources for machine learning model such as classification and clustering [3], [4], signal processing [5], orthogonal 
decomposition [6], dimensionality reduction algorithm [7], and more.  

The residual part of the paper is arranged as follows: section II outlines SVD theory in straightforward way. Section III imparts the 
connection between SVD and Eigen value decomposition (EVD) via spectral theorem. Section IV clarifies SVD utilization in image 
compression. Furthermore, section V designates result and discussion of SVD operation as the original computational mechanism in 
dimensionality reduction treatment. Section VI finalizes the paper.  

II. SVD THEORY  

In general, a data set is usually represent a structured or unstructured collection of data. Hence, we are considering a large data 
set 𝑀 ∈ ℂ௠×௡:  

𝑀 = ൮

𝑚ଵ,ଵ   𝑚ଵ,ଶ  …   𝑚ଵ,௠

𝑚ଶ,ଵ   𝑚ଶ,ଶ  …   𝑚ଶ,௠

⋮        ⋮        ⋱       ⋮ 
𝑚௡,ଵ   𝑚௡,ଶ   …   𝑚௡,௠

൲                                                                                                                            (1) 
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The columns 𝑚௜ ∈ ℂ௠ may be measured from any experiments or simulations of physical prospect. For instance, columns may 
signify images that have been reformed into column vectors through many entries as pixels into image. SVD is a novel matrix 
approximation that attend for every complex valued matrix 𝑀 ∈ ℂ௠×௡. It is denoted by  

𝑀 = 𝑃𝛴𝑄்                                                                                                                                                             (2) 

= [𝑝ଵ  𝑝ଶ … 𝑝௞  … 𝑝௠] ൦

𝜎ଵ   0  …    0
0   𝜎ଶ   …    0
⋮    ⋮     ⋱     ⋮ 

0   0   ⋯   𝜎௡

൪

⎣
⎢
⎢
⎢
⎢
⎡
𝑞ଵ

்

𝑞ଶ
்

⋮
𝑞௞

்

⋮
𝑞௡

்⎦
⎥
⎥
⎥
⎥
⎤

                                                                                                      (3) 

Where 𝑄் is the transpose matrix of 𝑄, 𝑃 ∈ ℂ௠×௠ , 𝛴 ∈ ℝ௠×௡ , and 𝑄 ∈ ℂ௡×௡ . The matrices 𝑃  and 𝑄  are square orthogonal 
matrices of Eigen vectors of A. 𝑄 = [𝑞ଵ  𝑞ଶ … 𝑞௡]  orthogonally diagonalize 𝑀்𝑀 . 𝛴  ia a real non-negative diagonal matrix 
containing singular values are sorted in descending order  and the main diagonal elements of 𝛴 are  

𝜎ଵ = ඥ𝜆ଵ, 𝜎ଶ = ඥ𝜆ଶ, ….,𝜎௡ = ඥ𝜆௡   referred to as singular values of 𝑀 where 𝜆ଵ, 𝜆ଶ, … , 𝜆௡  are the nonzero eigen values of 

𝑀்𝑀 related to the column vectors of 𝑄.  

Note that P and Q are also orthonormal matrices and both are defined by:  

 𝑃𝑃் = 𝑃்𝑃 = 𝐼௠×௠ 

                                                                                             𝑄𝑄் = 𝑄்𝑄 = 𝐼௡×௡                                                                   (4)                                                         

The vectors 𝑝ଵ, 𝑝ଶ, … 𝑝௡ are called left singular vectors of 𝑀, and the vectors 𝑞ଵ  𝑞ଶ … 𝑞௡ are called the right singular vectors of 𝑀. 
The rank 𝑟 of the matrix 𝑀 is the number of nonzero singular vaues of 𝑀.  

III. PROPERTIES OF SVD 

Based on row and column numbers, certain properties of 𝑀 has been exposed in the following cases:   

1) when m≪ 𝑛:in this case the matrix 𝑀 is a short fat matrix and M may be a full row rank (𝑘 = 𝑚). So, 𝛴 contain at most m non 
zero singular values on the main diagonal. Whereas 𝑀exactly represent as  

𝑀 = 𝑃෠𝛴෠𝑄்                                                                                                                                                                         (5)  

where 𝑃෠ ∈ ℂ௠×௠, 𝛴෠ ∈ ℂ௠×௠ and 𝑄෨ ∈ ℂ௠×௡. 

Here, 𝑃෨  and 𝑄෨  have the first 𝑘 ≤ 𝑛 columns of 𝑃  and 𝑄  respectively and 𝛴෨  contain first 𝑘 × 𝑘 block of 𝛴 . Now in the form of 
Economy SVD, if k< 𝑚 it is possible to approximate 

 𝑀 as  𝑀 ≈ 𝑃෨𝛴෨𝑄෨்                                                                                                                                                             (6) 

 where 𝑃෨ ∈ ℂ௠×௞, 𝛴෨ ∈ ℂ௞×௞ and 𝑄෨ ∈ ℂ௞×௡. 

2) when 𝑚 ≫ 𝑛: in this case the matrix M is a tall-skinny matrix and 𝑀 may be a full column (𝑘 = 𝑛) and sigma matrix contain at 
most n nonzero singular values. Whereas M may represent as   

𝑀 = 𝑃෠𝛴෠𝑄்                                                                                                                                                                         (7) 

where  𝑃෠ ∈ ℂ௠×௡, 𝛴෠ ∈ ℂ௡×௡ . Now in the form of Economy SVD, if k< 𝑛 it is possible to approximate 

 𝑀 as  𝑀 ≈ 𝑃෨𝛴෨𝑄෨்                                                                                                                                                             (8) 

 where 𝑃෨ ∈ ℂ௠×௞, 𝛴෨ ∈ ℂ௞×௞ and 𝑄෨ ∈ ℂ௞×௡.                                                    
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 3) when 𝑚 = 𝑛: in this case matrix 𝑀 is a square matrix and  Eigenvalue Decomposition (EVD) is used for this square matrix as 
follows: 

𝑀 = 𝐴𝐷𝐴ିଵ                                                                                                                                                                      (9) 

where 𝐴 ∈ ℂ௠×௠ is a Eigen vector matrix of 𝑀 and 𝐷 ∈ ℂ௠×௠ is a diagonal matrix which contain eigenvalues. Generally, columns 
of 𝐴 are linearly independent vectors. These vectors are not orthonormal. In symmetric matrix, 𝑀 = 𝑀் , approximation of 𝑀 is 
given by 𝑀 = 𝐵𝐷𝐵்                                                                                                                                          (10) 

which is known as spectral theorem of 𝑀.  

Thus, 𝐵 is a square orthogonal and orthonormal matrix of eigenvectors of 𝑀. 

Note that 𝐵 can express as follows: 

𝐵்𝐵 = 𝐵𝐵் = 𝐼 and 𝐵ିଵ = 𝐵் . 

IV. IMAGE COMPRESSION USING SVD 

As we have mentioned above, when SVD is applied along a given image matrix such as 𝑀  where each entry in the matrix 
corresponds to a pixel value, then it is decomposed into three different matrices 𝑃, 𝛴 and 𝑄 as it mentioned earlier. By selecting 
only the largest singular values and corresponding vectors from (𝑃) and(𝑄), a compressed approximation of (𝑀) can be formed. 
This reduce the amount of data needed to store the image. Nevertheless, image does not compress it only utilizing SVD. SVD 
enables the representation of an image using fewer values by capturing the essence of an image in a smaller set of singular values. 
This is crucial for compressing images without significant loss of quality. The rank of the matrix after SVD reflects the number of 
singular values that are needed to represent the image. From the definition of SVD in equation (2) and from the properties of SVD, 
components of SVD for the matrix M can be expressed as sum of k rank-1 matrix as 

𝑀 = ∑ 𝜎௜
௥
௜ୀଵ 𝑝௜𝑞௜

்                                                                                                                                                      (11) 

where 𝜎௜is the ith singular values of matrix 𝑀, 𝑝௜ , 𝑞௜ are the corresponding singular vector matrices of M and 𝑟 = min(𝑚, 𝑛).  

Equation (11) can be rewritten as, 

𝑀 = 𝜎ଵ𝑝ଵ𝑞ଵ
் + 𝜎ଶ𝑝ଶ𝑞ଶ

் + ⋯ + 𝜎௡𝑝௡𝑞௡
்                                                                                                                 (12) 

where r is the rank of 𝑀.   

Above formula indicates that first term of the summation would have largest contribution and the last term would have the smallest 
contribution. To achieve largest amount of compression, equation (12) becomes  

𝑀௞ = 𝜎ଵ𝑝ଵ𝑞ଵ
் + 𝜎ଶ𝑝ଶ𝑞ଶ

் + ⋯ + 𝜎௞𝑝௞𝑞௞
்                                                                                                                (13) 

where 𝑘 < 𝑟.   

Using equation (13), reconstructed image will reduce the storage space requirement to 𝑘(𝑚 + 𝑛 + 1) bytes as compared to storage 
space requirement of 𝑚𝑛 bytes of the main uncompressed image.  

To achieve required storage space, we can simplify (𝑚𝑛) matrix with the values ranging from 0 to 255.                                                  

In short, value of 𝑘 be picked in such a way that better amount of compression is attained. 

By comparing the rank and information stored we can assess the compression ratio and the effectiveness of the compression. A 
lower rank may means that the image can be compressed more, reducing storage requirements without significant affect visual 
quality. To evaluate the outcomes of the various compression technique and as well as to measure the storage degree to which a 
figure is compressed, many assessment measures are follows: 
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1. Compression Ratio:  This is calculated by the comparing the size of the original data to the size of the compressed data 
and is defined by 

𝑚𝑛

𝑘(𝑚 + 𝑛 + 1)
. 

Hence, Space required (%) is 
(௠ା௡ାଵ)௞ 

௠௡
× 100. 

2. Information stored (%): This is indicated by the ratio of the sum of the square of the singular values of the diagonal matrix 
to the sum of the square of total singular values of the diagonal matrix. Mathematically it can be written as, 

= (
∑ ఙ೔

మೖ
೔సభ

∑ ఙ೔
మ೙

೔సభ

) × 100.      

3. Frobenius norm: The Frobenius norm of a matrix is defined as square root of the sum of the square of its singular values. 
In SVD based image compression, the Frobenius norm of the difference between the original matrix 𝑀  and its 

approximation 𝑀௞ is defined by, ‖𝑀 − 𝑀௞‖ி = ට∑ ∣ 𝑚௜௝ − 𝑚௜௝
௞ ∣ଶ௠,௡

௜,௝ . Frobenius norm indicates the root mean square 

error between original image and its approximate.     

V. RESULT AND DISCUSSION   

A colorful beach image is considered for compression whose original size is 259 × 194 shown in figure-1(a). We can approximate 
the image by using only the first k singular values and Python program is used to complete this work. This approximation retains 
the essential features of the image while reducing storage space. For image compression, we choose a value of k (number of singular 
values) to balance reconstruction quality and compression ratio. In the context of SVD, the Frobenius norm quantifies the difference 
between the original image matrix and its reconstructed version using a reduced rank. In figure 1(b), rank 5 is considered in which 
case space required is 4.52% and information stored is 58.17 in percentage but Frobenius norm is 15.41 with lower image fidelity. 
In figure 1(c), with rank 25 space required is 22.59% and information stored is 76.28 in percentage but Frobenius norm is 8.12. In 
this case, image quality for rank 25 is better than for rank 5. In this case space required and information storage retained is larger 
than for rank 5 but Frobenius norm is smaller means less error. For rank 50 in figure 1(d), space required percentage is 45.18, 
information stored percentage is 86.81 but Frobenius norm is 4.86. Hence, root mean square error is decreased while space required 
(%) and information stored (%) is increased. Similarly, In figure 1(e) and 1(f) with rank 75 and 100, achieved space required is 
67.77% and 90.36% and Information stored is 93.24% & 97.28% respectively. But both cases Frobenius norm is 2.83 and 1.35 
sequentially. It is clearly seen that image quality is getting better while increasing the number of singular values. Each case space 
required and information stored is increased but Frobenius error is decreased. So, larger singular values preserve better image 
quality but require more storage. Cumulative energy kept in top k singular values by comparing rank with cumulative sum of the 
singular values of sigma matrix in figure 2(a). In figure 2(b), Comparison between log sigma versus rank (singular values) allows 
us to emphasize the important features while suppressing noise and less relevant details. Using the logarithm of singular values 
against the rank helps strike a balance between compression efficiency and image quality. Figure 2(c) indicates Frobenius norm is 
decreasing while number of singular 

value increasing. By comparing rank versus percentage storage required in figure 2(d), can be judged that higher ranks preserve 
more information but require larger storage space. 
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                                                    Figure-1(a)                                                                                             Figure-1(b) 

                                              

         

                                                   Figure-1(c)                                                                                     Figure-1(d) 
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                                        Figure-1(e)                                                                                                  Figure-1(f) 

 

 

 

                                                                                            Figure-2(a) 
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                                                                                                            Figure-2(b)     

  

                          

                                                                                                   Figure-2(c) 
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                                                                                                Figure-2(d) 

VI. CONCLUSION   

This paper demonstrate a modest outline to Singular Value Decomposition (SVD) method. SVD is a foundation and significant tool 
for various techniques and algorithms especially in machine learning. SVD has a great application in practical life including the 
field of data science, artificial intelligence, linear system, dynamical system, and so on. Singular Value Decomposition shows how 
it can work in image compression by retaining the largest and significant singular values in an image for dimensionality reduction. 
By using fewer singular values, we represented the necessary features of the image while compressing it. Space percentage, 
Information storage percentage, and Frobenius norm are carried out and also shown their comparison based on overall image 
compression in context of SVD. The compressed image requires less storage space compared to the original image. In the 
reconstructed image, image quality getting better follows that required space (%) and Information storage (%) taking larger while 
retaining k-largest singular values.  
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