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Abstract—Functional connectivity is referred to as the temporal interaction between different brain regions that are spatially distant 
from each other. It is commonly examined during resting states by classifying resting-state functional connectivity (rs-FC) patterns and 
their associated synchronized activity to understand the underlying neural mechanisms that support cognitive processes. With the 
advancement of cutting-edge neuronal systems, multimodal imaging, and computational advances have served as promising tools for rs-
FC studies. Despite having reviewed resting-state networks and their influence on a range of health anomalies in the existing literature, 
there nevertheless remains a lack of reviews that delve into diverse imaging modalities and computational modeling approaches for rs-
FC analysis. Therefore, this systematic review aims to provide an understanding of these technologies that analyze the resting-state 
network functional connectivity and their correlation to cognitive functions. Through a systematic approach to analyzing studies, the 
most frequently employed modality was functional magnetic resonance imaging (fMRI) due to its high spatial resolution. Key findings 
demonstrated that higher functional connectivity levels are often linked to greater Exin ratios, which subsequently affect large-scale 
functional brain synchronization. Across various computational models, a non-parametric classifier has shown promise for rs-FC analysis 
in various contexts due to its ability to handle multiple EEG features. Moreover, the multivariate model is identified to have superior 
performance with a predictive area under the curve (AUC) of ~0.77. Overall, the present study underscores the vitality of using imaging 
and computational tools in elucidating the intricacies of rs-FC and its effects on individual cognition.  
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I. INTRODUCTION 

Resting-state functional connectivity (rs-FC) is a promising component for comprehending the fundamental structure and 
organization of an individual brain. By examining the synchronized activity of numerous brain areas when at rest, this technique 
uncovers the underpinning neural networks that facilitate a wide variety of cognitive activities. Often, the connectivity may have 
no previously established anatomic correlation or could emanate from an indirect route via a mediating area or direct anatomic 
connection [1]. In recent decades, targeted functional connectivity has become the focus of many studies and a potential predictor 
of neurological feedback training efficacy [2]-[3]. It has been discovered that variations in functional connectivity during resting 
state can help distinguish individuals from a broad population [4] and have impacted how tasks are performed in several cognitive 
domains [5].   

Techniques such as multimodal imaging and computational modeling are used in the context to understand more about the 
fundamental processes of human brain function and precisely how they connect to cognitive functions. Moreover, these approaches 
enable the functional networks involved in psychological cognition to be assessed in a more thorough and nuanced manner. The 
term “multimodal imaging”, also known as multiplexed imaging, is typically referring to the usage of various imaging modalities 
to record different facets of neural activity. Modalities including electroencephalogram (EEG), magnetoencephalography (MEG), 
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positron emission tomography (PET), functional near-infrared spectroscopy (fNIRS), and functional magnetic resonance imaging 
(fMRI) are frequently employed in combination for the analysis of functional connectivity.  

 The integration of multiple modalities can yield a deeper understanding of the interactions between different parts of the human 
brain at rest, as each modality offers distinct insights into cognitive processes. For example, fNIRS is currently considered a valuable 
tool when used with EEG due to the absence of electro-optical interference [6]. To add on, this joint EEG-fNRIS measurement has 
been applied to language processing and serves as a mode of communication for individuals [7]. Nonetheless, some challenges arise 
when simultaneous EEG-fMRI recording is employed. This is because magnetic gradient artifacts may corrupt the inserted EEG 
data, and the functional images might be contaminated by artifacts derived from the electrode placement [8]. However, it is possible 
to analyze the fMRI data obtained during the resting state to process and generate rs-fMRI signals as depicted in Fig. 1 [9]. 
Undoubtedly, studies on rs-FC employing magnetic resonance imaging (MRI) have started to recognize extensive functional 
networks that underlie the mechanisms of cognitive and attentional regulation [10].   

 

Fig. 1. The functional connectivity generated from fMRI illustrates the time course of the resting-state signals from two separate 
brain regions within the default mode network [9]. 

 Meanwhile, data generated from the imaging modalities can further be analyzed using computational modeling. Technically, 
it leverages imaging data to create mathematical models that play vital roles in stimulating the behavior and functioning of the 
brain’s resting-state networks. In computational modeling of resting-state networks, the use of non-parametric classifiers and 
semantic distance can help classify the varying states of consciousness and quantify intricate cognitive functions. Furthermore, 
changes in functional connectivity patterns can generally be explained by a reduction in global coupling strength in simulated whole-
brain computational models [11]. To gain insight into the effect of long-term interactions across areas on the rs-FC changes, 
especially in clinical groups, it is crucial to estimate the model’s effective connectivity (EC). The EC ideally produces the observed 
FCs through the optimal connection strengths among the regions within the model. Changes in rs-FC can simply be accounted for 
via a global shift for optimum dynamics by adjusting the model parameters in healthy intervention, as shown in Fig. 2 [12]. Overall, 
both multimodal imaging and computational modeling can serve as a potent way to analyze the complexities of resting-state network 
connectivity and its effects on psychological and cognitive behaviors.  
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Fig. 2. Overview of the computational model used to study alterations of rs-FC that include three panels, the effective 
connectivity optimization, the Hopf normal model, and the overall effect of the local bifurcation parameter [12]. 

Several existing pieces of literature have reviewed the resting state networks [13] and their effect on various diseases and health 
dysfunctions [14]-[19]. This reflects a burgeoning interest in acquiring knowledge related to the intrinsic activity of the human brain 
and how alterations in resting-state networks could have implications. However, there is a lack of reviews regarding diverse 
multimodal imaging approaches and computational models for rs-FC studies. Therefore, this systematic review aims to synthesize 
existing studies on both multimodal imaging and computational modeling of rs-FC networks to evaluate their effectiveness and 
understand how these approaches can enhance the identification of psychological states and specific cognitive functions.  

II. METHODOLOGY  

2.1. Literature Search and Evaluation  

Inclusion Criterion  

Studies from relevant disciplines spanning from health science, psychology, and neuroscience to computer science and 
engineering that provide the required data were included. Another inclusion criterion is ensuring that the focus of the studies is on 
the use of multimodal imaging and computational modeling, their effects on rs-FC, and associated cognitive functions. Conversely, 
searched articles will be excluded if they were written in English, not within the most recent publication years, or in the form of 
books or conference proceedings. 

2.2. Literature Identification 

The literature search was facilitated by using various databases, including Google Scholar, Web of Science, Springer, and 
PubMed. To base the present review on the most up-to-date literature considering data retrieval and synthesis in the age of 
digitization, limiting the publication range date from 2014 to 2024 is crucial. By emphasizing this timeframe, it is intended to 
capture the latest advances in multimodal imaging and computational modeling of rs-FC. Some predefined terms and their variations 
correlated with resting-state, functional connectivity, multimodal imaging, and computational modeling were utilized. After 
conducting both a database and manual search, a total of 118 articles were identified. 



Resting-State Network Functional Connectivity Analysis: A Multimodal Imaging and Computational Modeling Approach  
 

 
 
Vol. 44 No. 2 May 2024               ISSN: 2509-0119 361 

2.3. Screening for Inclusion 

The strategy of systematically evaluating search results to locate the studies that fit particular criteria is known as screening. 
To further decide the relevance of findings to this research topic, the full titles and abstracts were screened based on the 
predetermined inclusion criteria. As a result, 60 articles were retrieved. These studies that were deemed relevant will be subjected 
to another round of screening in full-text to assess their relevance in greater detail. 

2.4. Eligibility Assessment 

Each selected 13 full-text articles were skimmed through to assess the eligibility of the studies. Articles included for the review 
are those with sufficient data and fulfill all other specified criteria. This phase ensures that the studies to be included meet the 
requisite standards for inclusion and are pertinent to the research question. Technical reports, particularly, are not included in this 
review due to the lack of a peer-review process. Furthermore, articles that are not available in full-text were excluded too. Only 
articles with well-cited references that are of high quality were included. After meticulous review, a total of thirteen articles are 
selected for this systematic review. These 13 studies that met the eligibility criteria proceeded to the final analysis. 

2.5. Data Extraction and Synthesis  

The data to be extracted include participant characteristics, such as sample size, imaging modalities as well as computational 
modeling methods used, analytical approach, key results related to rs-FC, and associated cognitive-psychological attributes. 
Meanwhile, the synthesis concentrated on comprehending the potential of both imaging and computational models in analyzing rs-
FC and the effects of rs-FC on cognitive processes and correlated psychological states. On top of that, the synthesis also highlights 
the knowledge gaps, explores the implications of the outcomes, and examines the trends or recurring themes across studies. The 
goal of data synthesis is to offer a thorough overview of the present state of study in this field, guided by the set research objectives.   

 

Fig. 3. Systematic review methodology. 
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III. RESULTS AND DISCUSSION  

3.1. Multimodal Imaging  

In current years, many rs-FC studies have integrated multimodal imaging modalities, particularly fMRI or rs-fMRI [20]-[27], 
fNIRS, and EEG [28]-[29]. However, fMRI emerges as the most widespread imaging technique because it allows for precise 
localization of the neural activity due to high spatial resolution. Nonetheless, fNIRS is especially beneficial in measuring 
hemodynamic alterations linked to brain activity since it is a non-invasive method. Generally, every modality offers distinct 
perspectives on brain activity and functional connectivity during resting states. A more detailed comprehension of rs-FC and its 
implications for psychological cognition can hence be made feasible by combining these modalities. As analyzed, most of the 
studies' analytical approach used is seed-based correlation [24-25, 27, 29]. This is due to its interpretability, simplicity, and 
sensitivity to negative and positive correlations. Although other findings may include independent component analysis (ICA) as 
their analytical method which can provide insightful data into brain network organization [26], seed-based correlation is still 
prevalent because of its capacity to target networks of interest or specific brain areas.    

       The study of Kocher et al., [24] determined that there was a decreased functional connectivity, particularly in the parietal and 
left temporal default mode network (DMN) nodes. In this context, DMN activity refers to the triggering of internal cognitive 
processes without external stimuli [10, 30]. As described by Andrews-Hanna et al., [31], self-generated cognition, for example, 
imagination and mind wandering is closely associated with DMN activation. Subsequently, the reduced connectivity has hugely 
impacted both language processing and verbal working memory. However, results suggested that education level could have a 
positive effect on DMN functional connectivity loss and related cognitive impairments. Hence, it emphasizes the significance of 
cognitive reserve in preserving cognitive function. Champagne et al., [25], on the other hand, discussed a comparative study between 
mTBI individuals and healthy controls, where greater cerebral blood flow (CBF) was observed in mTBI patients. The increased 
CBF may be involved in the blood oxygen level-dependent (BOLD) signal modulation, thereby compensating for impaired 
functional connectivity within the cortical networks. Overall, these findings indicate that changes in functional connectivity, such 
as DMN, can potentially be the contributing factor in cognitive deficits but can be arguably offset by cognitive reserve and 
compensatory mechanisms like elevated CBF.  

 A recent study by Premi et al., [20] focused on assessing resting-state neural activity between GRN Thr272fs mutation carriers 
and control groups. Due to reduced regional homogeneity (ReHo), fractional amplitude of low-frequency fluctuation (fALFF), and 
degree of centrality (DC) in patients, the asymptomatic GRN carrier groups exhibit altered resting-state neural activity. The 
outcomes imply that functional neuronal network abnormalities, despite being present in asymptomatic carriers, are a feature of 
GRN pathophysiology and may have on the progression of cognitive deficits in individuals. Meanwhile, the study by Ruppert et 
al., [26], focuses more on individuals with mild cognitive impairment (MCI) for the functional connectivity analysis. However, the 
results were in contrast to those of Kocher et al., [24], where increased functional connectivity was found along fronto-parietal 
connections. Based on these studies, it is demonstrated that rs-fMRI is an effective and sensitive imaging modality for identifying 
cognitive impairment in its early stages and monitoring disease progression.  

 The finding of Trambaiolli et al., [28] typically estimated functional connectivity with particular emphasis on fNRIS in terms 
of the measure of hemodynamic activity, EEG gamma, and beta bands. The predictive model revealed that there is a strong 
correlation between the EEG gamma-m-alpha sensorimotor cortex (CSS) and the fNIRS oxyhemoglobin variations in CSS. In 
general, the model has a mean absolute error of less than 20%. It suggests that hemodynamic resting-state measurements and pre-
task electrophysiological data are important markers of neurofeedback performance, thereby offering an understanding of the brain 
mechanisms that control cognitive processes. Similarly, Sirpal et al., [29] analyze the resting-state functional connectivity using 
combined fNIRS and EEG. This study supported the result of Trambaiolli et al., [28], stating high-frequency EEG ranges, notably 
the gamma band, have been associated with fNIRS signals. This confirmed that the neural output of EEG from the human brain 
even at rest can be utilized to predict fNIRS signals.  

 In the work of Li et al., [22], selective effects were identified to occur in the functional connectivity between specific brain 
regions, while participants were at resting state. These changes in functional connectivity, specifically the medial prefrontal cortex 
and medial temporal lobe, have been discovered to be correlated with cognitive performance. Hence, it is indicated that the pattern 
or strength of functional connectivity between these brain regions can possibly influence an individual’s level of cognitive 
performance or ability in older age. Conversely, van den Heuvel et al., [23] described that higher levels of intrinsic functional 
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connectivity were determined by a greater Exin ratio. In this regard, the Exin ratio represents chemoarchitecture, which can impact 
functional cognitive synchronization and communication patterns. Although both the findings of Li et al., [22] and van den Heuvel 
et al., [23] analyzed rs-FC using fMRI, their emphasis is on different aspects. The focus of Li et al., [22] is on the role of specific 
networks in cognitive function, whereas van den Heuvel et al., [23] highlighted the interaction between chemical makeup and the 
structure of the neural networks.  

        Based on the study of Tewarie et al., [21], the analysis of rs-FC networks was conducted by employing coupled neural mass 
models, including fMRI and magnetoencephalography (MEG) data. An identifiable overlap was observed between the recordings 
of fMRI and MEG, in particular in the MEG alpha band. Since the MEG alpha band exhibits similar patterns to those of fMRI, they 
can hence offer complementary data into brain activity and functional connectivity during resting states. Moreover, the overlap 
strongly reflects synchronized neuronal activity within the brain regions as identified by MEG while closely aligning with regions 
that show synchronized blood flow fluctuations, as detected by fMRI. By connecting these brain networks, it is possible to 
understand their roles in different cognitive functions, such as decision-making, memory, and attention level. In contrast to Tewarie 
et al., [21], the recent finding of Overbeek et al., [27] studied the integration of fMRI and magnetic resonance spectroscopy (MRS) 
with its focus mainly on the anterior cingulate cortex (ACC). Findings revealed that the altered functional connectivity was hugely 
attributed to the distinguished ACC connectivity patterns. This suggests that disruptions in ACC can lead to both emotional and 
cognitive disturbances, affecting normal brain function. The combined approach of fMRI-MEG [21] and fMRI-MRS [27] can 
provide a more holistic way than merely fMRI [20, 22-23, 25] to analyze rs-FC due to precise timing information, enhanced temporal 
and spatial resolution, and overall increase confidence in the results.   
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TABLE 1. STUDIES CHARACTERISTICS AND RESULTS ON VARIOUS MULTIMODAL IMAGING. 

Articles Sample  Imaging Modalities  Analytical Approach  Key Findings  
 

Significance  

Li et al., [22] 45 older adults  

(26 in the intervention group 
and 19 in the control group) 

fMRI  Comparison between the pre-and 
post-intervention fMRI data; 
assess alterations present in 
connectivity patterns  

Selectively affecting the 
functional connectivity between 
the medial temporal lobe and 
medial prefrontal cortex during 
resting state and an individual 
cognitive performance  

 

Preserve cognitive function 
and brain health during old 
age 

Trambaiolli et al., [28] 31 healthy 

(16 women) 

fNIRS and EEG  Estimate resting-state FC from 
each neuroimaging modality; 
EEG gamma and beta bands as 
well as fNIRS oxyhemoglobin 
and deoxyhemoglobin 
concentrations  

Predictive model exhibits a 
relatively small average absolute 
error (< 20%); substantial 
association between fNIRS 
oxyhemoglobin CSS and the 
EEG gamma-m-alpha CSS (r = -
0.456, p = 0.030) 

 

Both pre-task 
electrophysiological and 
hemodynamic resting states 
play vital roles as indicators 
of neurofeedback 
performance 

Kocher et al., [24] 80 patients; 80 healthy subjects  rs-fMRI, anatomical MRI, amino 
acid PET  

Combination of ICA or seed-
based correlation 

Decreased functional 
connectivity found in both the 
left temporal and parietal DMN 
nodes may lead to deficient 
verbal working memory and 
language processing; individuals 
with higher education are less 
likely to have DMN connectivity 
loss and cognitive impairment    

 

Progressive cognitive 
deterioration is linked to 
changes in the DMN  

Champagne et al., [25] 23 subjects with mTBI; 27 age-
matched healthy controls  

rs-fMRI Seed-based correlation Individuals with mTBI showed 
substantially greater CBF0 
compared to the control group  

Influence of physiological 
modulators of BOLD signal 
on the FC of cortical 
networks   

 

van den Heuvel et al., [23] 2 datasets; the first dataset from 
the human cortex and the second 
dataset from the macaque cortex 

fMRI Correlation coefficients between 
the resting-state FC values of 
cortical regions and Exin ration 
values  

A higher Exin ratio 
demonstrated greater levels of 
intrinsic FC  

Influence of 
chemoarchitecture on 
communication patterns and 
large-scale functional brain 
synchronization  
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Tewarie et al., [21] 2 datasets; 17 healthy subjects 
from the previous study, 68 
healthy subjects with MEG data  

fMRI and MEG  Coupled neural mass models  Significant overlap between 
MEG and fMRI recordings of 
resting-state FC networks, 
especially in the MEG alpha 
band 

 

Influence of functional core 
network on communication 
amongst high-degree nodes 
within the structural network  

 

Ruppert et al., [26] 2 datasets; first dataset: 16 
healthy individuals, second 
dataset: 36 with normal 
cognition & 12 with MCI 

FDG-PET and rsfMRI  ICA Increased functional connectivity 
along fronto-parietal connections 
in patients MCI patients in 
comparison to individuals with 
normal cognition and control 
groups  

 

Impact of hemodynamic 
measurements of neural 
network activity on cognitive 
symptoms  

Overbeek et al., [27] 21 healthy controls; 19 
individuals with first-episode 
psychosis  

MRS, fMRI Seed-based correlation Distinct ACC FC between 
healthy controls and individuals 
with first-episode psychosis in 
some brain areas   

A correlation between 
resting-state FC, inhibitory 
(GABA), and the major 
excitatory (glutamate) 

 

Sirpal et al., [29] 40 epileptic individuals 

27 males, 13 females 

fNIRS and EEG Seed-based correlation The predictive fNIRS signals 
were higher frequency EEG 
ranges, in particular the gamma 
band  

Prediction of fNIRS signals 
from neural data (EEG) 
within a resting human 
epileptic brain 

 

Premi et al., [20] 38 healthy controls; 31 GRN 
Thr272fs mutation carriers (17 
asymptomatic carriers and 14 
patients)  

rs-fMRI ReHo, fALFF, DC Altered resting-state neural 
activity in asymptomatic GRN 
carrier groups; Reduced ReHo, 
fALFF, and DC in patients  

 

Characterization of GRN 
pathophysiology by 
functional neural network 
changes  

*fMRI: functional magnetic resonance imaging, fNIRS: functional near-infrared spectroscopy, EEG: electroencephalogram, CSS: connectivity summary scores; rs-fMRI: resting-state functional MRI, PET: 
positron emission tomography, DMN: default-mode network, mTBI: mild traumatic brain injury, ICA: independent component analysis, CBF0: cerebral blood flow, BOLD: blood-oxygen-level-dependent, FC: 
functional connectivity, MEG: Magnetoencephalography, FDG-PET: [18F]-fluorodeoxyglucose positron emission tomography, MCI: mild cognitive impairment, MRS: magnetic resonance spectroscopy, ACC: 
anterior cingulate cortex, GABA: gamma-aminobutyric acid, ReHo: regional homogeneity, fALFF: fractional amplitude of low-frequency fluctuation, DC: degree centrality . 
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3.2. Computational Modeling  

There are some applications of computational models that have been widely used in rs-FC analysis. This includes semantic 
distance measures [32], a whole-brain mean-field computational model [33], deep learning model [34] and a non-parametric 
classifier based on ensembles of decision trees [35]. Computational models can provide advantages in various forms, which include 
their role as proxies for physical connections between human brain areas at the macro and mesoscopic level [11]. Given the cutting-
edge technologies, the rs-FC data can be easily analyzed to elucidate the intricate interactions that are established between various 
regions of the brain during rest. Valuable insights, such as neural functional architecture, individual variations in rs-FC patterns, 
and network dynamics can all be yielded via these models. In addition, these computational models have proven helpful in 
understanding the neurological underpinnings of numerous cognitive abilities [36].  

A current finding by Orwig et al., [32] described the use of semantic distance measures to perform voxel-wise connectivity 
matrix computations. In observations, reduced connectivity in visual-temporal and parietal areas was found to be attributed to higher 
levels of dopamine transporter (DT), whereas greater local connectivity in the affected visual regions was highly associated with 
lower DT levels. This indicates that variations in rs-FC patterns might have an impact on one’s ability for creative thinking. Unlike 
Orwig et al., [32], the study of Hansen et al., [33] specifically delved into small non-linearities inside the human network nodes that 
resemble resting-state networks. This is achieved through the utilization of a whole-brain mean-field computational model, in which 
outcomes were compared with time-averaged functional connectivity data. The changes in the underlying neuronal processes have 
certainly led to a significant association discovered between resting-state neural activity and non-stationarity in functional 
connectivity. Underscoring the dynamic characteristics of resting-state neural networks, it is crucial to consider temporal alterations 
in functional connectivity when examining brain function, behavior, and cognition.  

To allow for a more comprehensive analysis of EEG indicators, a non-parametric classifier was utilized, as demonstrated by 
Engemann et al., [35]. Through this decision trees-based approach, multiple EEG features, such as theta and alpha frequency bands 
can be incorporated. The resulting predictive area under the curve (AUC) of about 0.77 signifies the superior effectiveness of the 
multivariate computational model over univariate techniques in classifying and monitoring cognitive states. Meanwhile, the study 
of Fan et al., [34] employed an end-to-end deep learning model with complementary algorithms, namely a long short-term memory 
(LSTM) network and convolutional neural network (CNN) to analyze functional connectivity within the brain based on time-varying 
connectivity patterns. Despite thousands of subjects involved, the model achieved a high classification accuracy of approximately 
93% which signifies the effective grouping of individuals based on functional connectivity patterns in the fMRI data. According to 
Pearson’s correlation coefficient results, it is interpreted that the model’s predictive power for crystallized intelligence is moderate 
but lower for fluid intelligence in response to rs-FC patterns. Overall, while Engemann et al., [35] focused on a single model, 
indicating a more traditional method, Fan et al., [34] adopted a more sophisticated approach that enabled the capturing of both 
temporal and spatial features present in fMRI data for a more comprehensive rs-FC analysis.  
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TABLE 2. STUDIES CHARACTERISTICS AND RESULTS ON VARIOUS COMPUTATIONAL MODELING. 

Articles Sample  Computational Modeling  Analytical Approach  Key Findings  
 

Significance  

Orwig et al., [32] 175 healthy adults Semantic distance; linear 
regression analysis  

 

Computed voxel-wise 
connectivity matrices; conduct 
linear regression analysis  

Decreased connectivity in the 
parietal and visual-temporal 
areas due to increased DT 
levels; increased local 
connectivity inside the visual 
areas can lead to decreased DT 
levels  

 

Differences in resting-state 
connectivity patterns can cause 
varying creative thinking ability  

Hansen et al., [33] 5 healthy subjects Whole-brain mean-field 
computational model 

Compared the outcomes of 
computational models optimized 
with fit time-averaged FC; use 
simplified linear stochastic 
models  

Observed small non-linearity 
within the network nodes; 
similar to resting state networks; 
broadened behavior repertoire 

 

A significant association 
between non-stationarity in 
resting-state FC and resting-
state neural activity  

Engemann et al., [35] 327 samples (148 with UWS, 
179 with MCS, 66 healthy 
controls)  

Non-parametric classifier based 
on ensembles of decision trees  

Analyzed EEG markers of 
consciousness; including 
multiple EEG features, such as 
alpha and theta frequency bands 

The non-parametric classifier 
obtained a predictive AUC of 
~0.77; the multivariate model 
has superior performance over 
univariate classification  

 

Application of EEG markers of 
consciousness in a variety of 
acquisition and clinical contexts 

Fan et al., [34] 1,050 individuals from Human 
Connectome Project  

End-to-end deep learning 
model; CNN; LSTM network  

Focused on acquisition of time-
varying patterns in fMRI data  

Achieved a high classification 
accuracy of ~93%; obtained 
Pearson’s correlation coefficient 
with prediction accuracies of 
0.49 and 0.31 for crystallized 
and fluid intelligence prediction 
tasks, respectively  

 

The prediction of individualized 
characterization of cognition 
traits can be enhanced via time-
varying connectivity patterns  

*DT: divergent thinking, UWS: Unresponsive Wakefulness Syndrome, MCS: Minimally Conscious State, AUC: area under the curve, CNN: convolutional neural networks, LSTM: long short-term memory  
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3.3. Current Trends, Limitations, and Future Directions  

The most recent trend of multimodal imaging is fMRI [20, 22-23, 25], particularly due to its non-invasiveness nature, overall 
high spatial resolution, and whole-brain coverage. However, merging various neuroimaging modalities [21, 24, 26-29] remains a 
common trend to obtain reliable and comprehensive data on brain activity for the analysis of rs-FC. The vitality of combining 
different multimodal methods, such as fMRI, fNIRS, EEG, MEG, and PET is to overcome the limits of certain modalities and 
examine neural processes from a wider perspective because comprehending the brain is a highly complex process. Moreover, no 
single imaging technique can adequately capture its structure and function. For example, while fMRI offers remarkable spatial 
resolution, it may have limitations in temporal resolution and addressing fine-scale neural activity [37]. The same applies to MEG 
and EEG, as they have great temporal resolution but limited spatial resolution [38]. Additionally, the sensitivity of MEG to magnetic 
interference or tangentially oriented currents that are in proximity to sensors, such as in the cortex [39] and the susceptibility of 
EEG to undesired noise [40] could further contribute to limitations. Hence, integrating these imaging modalities can significantly 
aid in studying brain function and analyzing rs-FC at multiple levels, be it at the microscopic scale of distinct neurons or the 
macroscopic scale of an individual’s different brain regions. As an illustration, fMRI can detect the spatial localization of neural 
activity, while complementary modalities like EEG and MEG can provide insights into the dynamics and timing of this neuronal 
activity and its functional connectivity during resting states. To enhance the analysis of rs-FC, some future directions may include 
delving further into network connectivity patterns like the DMN and conducting longitudinal studies, as described by Kocher et al., 
[24] to further elucidate the functional vitality of these neural networks and track alterations over time.  

A common trend observed in computational models for the analysis of rs-FC typically involves the use of both machine learning 
(ML) algorithms [35] and advanced statistical approaches [32]-[33] to extract and analyze rs-FC data. This trend becomes promising 
due to its capability to effectively process an enormous amount of imaging data associated with rs-FC and identify intricate 
connectivity patterns that may not be apparent with conventional approaches. Furthermore, the ability of these models to manage 
high-dimensional data, including connectivity matrices, has enabled a more nuanced knowledge of neural connectivity. However, 
there are several limitations in terms of capturing the range of rs-FC-influencing variables, such as behavioral, genetic, and 
environmental factors. The oversimplification of the highly interconnected brain’s neural networks by current computational models 
can lead to a restricted understanding of their true complexity. Furthermore, the requirements for large data sets for model training 
and validation can be challenging to come by, especially for uncommon or specialized populations. The diversity in rs-FC data 
between individuals and populations can potentially impede the generalizability of the outcomes. Therefore, the prospects for 
improving the understanding of rs-FC and the accuracy of the findings might consider the development of progressively convoluted 
computational frameworks that combine multimodal imaging data (EEG, MEG) and integrate complex network dynamics.  

IV. CONCLUSION  

This study highlights the significance of multimodal imaging and computational modeling in rs-FC analyses and its effects on 
cognitive functions. Modalities such as fMRI, fNIRS, EEG, and MEG were determined to be useful in both identifying and 
providing complementary information about the patterns in the rs-FC and how they relate to cognitive processes. Among all, fMRI 
emerged to be the most popular imaging approach for rs-FC studies. The key result reveals that increased functional connectivity 
levels are associated with higher Exin ratios, thereby affecting large-scale functional brain synchronization. Changes in rs-FC, 
specifically in the connectivity between the medial prefrontal cortex and medial temporal lobe, may impact individual cognitive 
performance. Outcomes from computational models, on the other hand, indicate that the multivariate model can potentially 
outperform the univariate classification method with a predictive AUC of ~0.77. Due to its capability to handle multiple EEG 
features, it has made a non-parametric classifier based on ensembles of decision trees accessible in various contexts. These findings 
have indeed offered insight into the neural mechanisms that underlie cognitive abilities and demonstrate the importance of 
leveraging imaging and computational frameworks in studying functional connectivity during resting states. 
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