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Abstract— Securing the ever-expanding Internet of Battlefield Things (IoBT) demands robust encryption solutions to safeguard 
sensitive data and system integrity. Unauthorized access here could result in personal data breaches and mission-critical system failures. 
This research evaluates the performance of the Chacha20-Poly1305 lightweight stream cipher on IoBT devices. with an average 
avalanche effect of 50.53%. Encryption time ranges from 261 ms for the shortest plaintext (16 bytes) to 17472 ms for the longest 
plaintext (8192 bytes). The decryption time varies from 266 ms to 17598 ms according to the plaintext length. The peak encryption 
throughput reaches about 468 Bps, and the decryption throughput is about 465 Bps for the longest plaintext. The results confirm that 
the Chacha20-Poly1305 algorithm operates with a high degree of speed and efficiency on the Raspberry Pi Pico RP2040, being a 
suitable solution for IoBT applications with fast response requirements and high security. 
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I. INTRODUCTION 

The growth of digital technology has opened up new opportunities in building an adaptive and responsive defense 
system. One concept that can be applied in building such a defense system is NCW. According to Cebrowski in [1] NCW is a 
concept of war that focuses on network connectivity, which integrates strategies, tactics, techniques, procedures, and military 
organizational structures to achieve superiority in war. NCW combines elements such as sensors, shooters, and decision 
makers into an integrated network that increases situational awareness in the battle space. 

The utilization of IoT has diversified into various fields, ranging from the implementation of Smart Cities for real-
time fire monitoring using drones [2], to its use in medical imaging and medical emergency response [3][4]. In addition, the 
utilization of IoT devices in the context of military operations has opened up new opportunities to collect, transmit, and 
analyze crucial data in real-time. The use of IoT in the military context is known as the Internet of Battlefield Things (IoBT), 
which clarifies efforts to integrate IoT technology in the military defense aspect. The sensors used in IoBT, such as inertial 
sensors, accelerometer sensors, gyroscope sensors, temperature sensors, camera sensors, and microphone sensors, function as 
eyes and ears in the field [5]. IoBT builds upon the established framework of Command, Control, Communications, and 
Intelligence (C3I) [6], a pillar of modern military operations.  C3I facilitates efficient decision-making through information 
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technology, and its evolution into C6ISR (incorporating Cyber-defense and Combat systems) reflects the growing importance 
of cybersecurity in this information-driven domain [7]. This is important because modern military operations rely heavily on 
information technology, so cybersecurity is a very important factor. Thus, the integration of IoT and IoBT concepts in the 
context of NCW is an important element in efforts to build a strong and responsive defense system in the modern 
technological era. 

However, strategic information, while invaluable, presents its own set of challenges. As military operations become 
increasingly data-driven, ensuring the data's integrity, confidentiality, and authenticity takes center stage. Unauthorized access 
in both IIoT and IoBT contexts can have devastating consequences: privacy breaches in IIoT can disrupt entire systems [8], 
while in IoBT, leaked battlefield secrets can cripple operations and endanger lives. Therefore, robust encryption measures are 
indispensable for data protection. From strategic communications and operation plans to location data and intelligence, all 
critical information must be shielded from prying eyes. Failure to do so can empower the enemy to launch counter-attacks, 
exploit vulnerabilities, and disrupt military coordination. To this end, encryption emerges as a vital line of defense. 

Encryption can be divided into two main categories, namely symmetric and asymmetric. In symmetric encryption 
methods, the process to encrypt and decrypt information is done using the same key [9]. The main advantage of symmetric 
encryption method lies in its efficiency in faster processing compared to asymmetric encryption [10]. Unlike conventional 
computers, IoT devices used on the battlefield have limited processing power, memory, and energy resources [11]. Therefore, 
traditional cryptographic techniques that are usually designed for conventional computers may be too complex and consume a 
lot of resources on these devices [12]. This is where the importance of lightweight cryptography, which can strike a balance 
between security and efficiency, ensures that important information circulating on IoT networks remains secure without 
compromising device performance. 

II. THEORY 

2.1 Lightweight Stream Cipher 

Lightweight encryption is a type of encryption designed primarily for devices with low computing power, limited battery 
life, small size, small memory, and limited power supply [13][14]. Therefore, traditional cryptographic methods may not work 
well for smart devices that have limited resources [15]. In the context of securing IoT and IoBT, the use of lightweight stream 
cipher algorithms becomes crucial as these devices often have significant resource limitations. 

Stream ciphers are cryptographic algorithms designed to encrypt and decrypt data in a continuous, stream-like manner, as 
opposed to block ciphers that process data in fixed-sized blocks [16]. Stream ciphers are well suited for applications where data is 
sent or received continuously, such as in real-time communication systems and resource-constrained devices [17]. It generates a 
keystream, a sequence of pseudorandom bits or completely random bits, which is then combined with the plaintext to produce the 
ciphertext. 

2.2 Chacha20 

ChaCha20 is a widely recognized and trusted stream cipher and symmetric key encryption algorithm. Developed by 
Daniel J. Bernstein [18], it offers a high level of security and performance, making it a popular choice in various cryptographic 
applications. ChaCha20 operates by generating a pseudorandom keystream based on a key, a nonce, and a counter. This 
keystream is then combined with the plaintext using a simple XOR operation to produce the ciphertext. In addition, ChaCha20 is 
designed to be highly efficient, making it suitable for use in resource-constrained environments such as IoT devices and mobile 
platforms. Its efficiency, combined with strong security guarantees, has led to its adoption in various protocols and systems, 
including secure messaging applications, VPNs, and TLS 1.3, the latest version of the Transport Layer Security protocol. 

2.3 Poly1305 

Poly1305 is a cryptographic message authentication code (MAC) algorithm designed to provide data integrity and 
authenticity in secure communication protocols [19]. Poly1305 operates by taking a secret key and a message as input and 
generating a fixed size authentication tag, which is then attached to the message. This tag acts as a cryptographic fingerprint of the 
message and key, ensuring that the message is not tampered with during transmission. When ChaCha20 and Poly1305 are 
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combined to create an Authenticated Encryption with Associated Data (AEAD) scheme that provides a level of confidentiality 
and integrity of encrypted data, the resulting construction is known as ChaCha20-Poly1305 [20]. 

III. RESEARCH METHODOLOGY 

In this research, the data to be collected and analyzed comes from the sensor integrated with the microcontroller used. 
The following are materials in the form of data that will be taken from the MPU6050 Accelerometer sensor: 

a. Acceleration Data: Measures acceleration on three axes (x, y, and z). This data will provide information about the motion 
and orientation of the device on which the sensor is placed. 

b. Gyroscope Data: Measures the angular velocity on three axes. This information is useful to know the change in 
orientation or rotation of the device. 

In this research, two microcontrollers will be used: a Raspberry Pi Pico with an MPU6050 sensor and an nRF24l01 
radio module; a Raspberry Pi Pico with an nRF24l01 radio module. The following is a design of the system flow for the 
encryption system that will be implemented. 

 

The UGV is represented as a microcontroller-based device equipped with a radio module and various types of sensors. 
The main function of the UGV is to collect data from these sensors, encrypt the resulting data, and then transmit the encrypted 
data through the available radio module. Before encryption is performed, the time will be recorded, then encryption will be 
performed, and after encryption and the tag is generated, the time will be recorded again. The initial and final times will then be 
calculated to obtain the encryption time. 

The GCS is also represented by a microcontroller-based device with a radio module. The role of the GCS is to listen to 
the radio signal sent by the UGV, then the decryption will be performed. Before decryption is performed, the time will be 
recorded, then decryption will be performed, and after the plaintext is retrieved, the time will be recorded again. The initial and 
final times will then be calculated to obtain the decryption time. 

Then performance calculations will be carried out, namely Avalance Effect, Encryption and Decryption Speed, and 
Throughput. 

a. Avalanche Effect: Measures how sensitive the encrypted output is to changes in the input data. This assesses the 
algorithm's resistance to cryptanalysis. 

b. Encryption/Decryption Speed: Examines how fast the system encrypts and decrypts data of varying sizes. This analysis, 
involving time measurements at different data sizes, reveals the algorithm's data processing efficiency, crucial for 
applications requiring fast data handling. 

c. Throughput: Analyzes the system's performance in managing data flow by investigating how much data can be 
transmitted per second across the network depending on the data size. 
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IV. RESULT 

To determine the duration of the encryption process accurately, the first step is to record the time. This is done 
immediately before the encryption process begins. Recording the time before the encryption process begins ensures accuracy in 
measuring the duration of the encryption process. Once the initial time recording is done, the encryption process can be started. 
Once the encryption process is finished, the final time recording is done. By subtracting the final time from the initial time of 
recording, we can determine the duration required for one encryption cycle. 

The table below shows the results of the encryption that has been carried out, along with the original plaintext data and 
other elements used in the encryption process. 

TABLE I.  ENCRYPTION RESULT 

Key Nonce AAD Plaintext Ciphertext Tag 
Encrypti
on Time 
(ms) 

0xc8dac0e
4f2d62563
360aa88db
38b98c4d2
7d9fb791a
3fee0ddc1
970e8d24c
f5b 

b'\x935\\\
x90\xb8\
xfa\xfdT
u\x94X ' 

 
b'Encrypt 
on RPI 
pico' 

b"{'gy': 0, 
'gz': 1, 
'tem': 
28.93, 'gx': 
-4, 'ax': 
0.06, 'ay': -
0.0, 'az': 
0.86}" 

bytearray(b'|A\xf1\t23\xb8\x
15\xf2\xad\x1f\x8f\xdb\x13\
xb8G-
\xb9\xf7\xbaL\xc8\xe6\x97\
x19G\xbeF=%m\x84O 
\xe1Z\xdc\x8cJ2\xeb^\xf2\x
04\xae\xf5\xea_Y\xc9\x99Y\
xd3\x9c\x0e\xdcP/\xe1\x80))
\xbc\xbd\xd3\xde*A\xc7\x9
9\xe4\xdc\x93h\x8e\xf0\xc6
?') 

bytearr
ay(b'3\
xc6\xc9
`\x8d\x
9a\xed\
xc9\x9e
}\xfd\x
899\x8
5\xac\n'
) 

406 

0xc8dac0e
4f2d62563
360aa88db
38b98c4d2
7d9fb791a
3fee0ddc1
970e8d24c
f5b 

b'\xde\xd
c=\xc1\x
e6\xa7\x
b5\xe1\x
a6\xf0\xe
c ' 

b'Encrypt 
on RPI 
pico' 

b"{'gy': 0, 
'gz': 0, 
'tem': 
28.88, 'gx': 
-4, 'ax': 
0.06, 'ay': -
0.0, 'az': 
0.86}" 

bytearray(b'+\xb30\xca\xd9\
x1f\x8f)\x9dKsx\xe1\x12\xb
2\xe7\xac\xfd\xbb\xc4\xd5\x
dd\xfeG\x18\x9b\xc4\xfa\x1
b\xcbB\xf70\x83\xcbY\xcfG
\x14\xe9o\x15\xcd\xdf)\xfa\
xf6\xb1\xbe\x0e\xbc\xc3#i\x
a00\x91\x0e\x04\\\xd9\x90\x
13c\x8f\xc6v\xda%\xf5(da+
LV0\x91') 

bytearr
ay(b'\x
dft\x07\
\\x8d\x
d1eC\x
cf\xf0\x
8e\x8f
G\x19\
xdeb') 

407 

0xc8dac0e
4f2d62563
360aa88db
38b98c4d2
7d9fb791a
3fee0ddc1
970e8d24c
f5b 

b'\xc2\xc
b[\x98\x
8e\x12\x
7f\xa5\xf
3\xa8q\x
8d' 

b'Encrypt 
on RPI 
pico' 

b"{'gy': 0, 
'gz': 1, 
'tem': 
28.84, 'gx': 
-4, 'ax': 
0.06, 'ay': -
0.0, 'az': 
0.86}" 

bytearray(b'\x02r\x04\x87y\
x8b\xd5\xdaQ\xf4\xdb\x1a\x
0e\x04\x82S\xa3\x98\xe8\xf
0\xd6y\xb4%K\xb6\xcf%\xc
6\xe4\xf6\xee\x7f\x84\xa2\x
10\x16\xfcO\x8df\x8b[\xb7\
xb7D\x90y0\x07\xf9\x11\x0
6\xdef\xba\xc4\x88\xd6J\x8
0\xc9\xe6\x95\xc1\x80\x07]\
xda\xdb9\xdb@\x9c~\xaa1\x
14') 

bytearr
ay(b'\x
8e\xe2\
x16-
\xa3"\x
ed\xaa|
z?\xefj,
Y\xde') 

406 
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0xc8dac0e
4f2d62563
360aa88db
38b98c4d2
7d9fb791a
3fee0ddc1
970e8d24c
f5b 

 
b'\xde5\x
b6@\xb7
\x7f\xc2.
A\x1c\xe
fA' 

 
b'Encrypt 
on RPI 
pico' 

b"{'gy': 0, 
'gz': 0, 
'tem': 
28.88, 'gx': 
-4, 'ax': 
0.07, 'ay': -
0.0099999
99, 'az': 
0.87}" 

bytearray(b"\x0em\xd4\\P\xa
0W\xfd\xddo\x11\xc6aa~\xc
dR+n\xe9\x8a\xe1\xb2pg\x0
0\xe0XFx7?\xe8{PX\xb7\xb
8\xb9\xf5\xe5\x9d\xb2r\xf2\
xfd\xf8\xf9(\xd0\xa6 
\x17\x8d\xfaVl\xea^@\xb2\
x1f\\a\x1aU\xd5\xb7\x93\x8
c\xc5\xf2\x01\xce\xa6\xfb6\t
z\xab'\x16[\xc9\xc2\xe6") 

bytearr
ay(b'\x
9b)\x0b
5@wT
d\n3&\
xa4\xbe
=\xac9'
) 

408 

0xc8dac0e
4f2d62563
360aa88db
38b98c4d2
7d9fb791a
3fee0ddc1
970e8d24c
f5b 

b'\x0f\xf
0\xcfV\x
a0/\xd7\x
92/\xf7\x
c4\xc6' 

b'Encrypt 
on RPI 
pico' 

b"{'gy': 0, 
'gz': 1, 
'tem': 
28.93, 'gx': 
-4, 'ax': 
0.06, 'ay': -
0.0099999
99, 'az': 
0.86}" 

bytearray(b'c=\x10\x95=\xcd
)\xbe\xf5\x18(\x0e\xbe\x07\
x95\x87\xd7cZp\xd6"/\xf6\x
9ce\xd8/\xaex)\xb0\x83t6\x1
e\x18\xdb\xef\xae\xf7\xe5\x
a3e\xf6\n9yKY\xad\xe0_p\x
d3z\xe3(\xde\x8c\xb0\x03\x
a0X\xcc\xb4j\x13f;\x83\x1d\
xd2~N\xe6\x0c\xf5\xb1\xf7\
xd2\x115\xe7K\xba') 

bytearr
ay(b'{\
xfc\xc6
r\xc7vS
\xae7%
\x8aoW
\xa5\x0
8\xe3') 

408 

 

Each row in the table depicts one instance of the encryption process, showing variations in encryption time and helping 
in further analysis of the consistency and reliability of the encryption algorithm under different conditions.  

TABLE II.  DECRYPTION  RESULT 

Decrypted Text 
Latenc
y (ms) 

Decrypted 
Time (ms) 

b"{'gy': 0, 'gz': 1, 'tem': 
28.93, 'gx': -4, 'ax': 0.06, 
'ay': -0.0, 'az': 0.86}" 

51 406 

b"{'gy': 0, 'gz': 0, 'tem': 
28.88, 'gx': -4, 'ax': 0.06, 
'ay': -0.0, 'az': 0.86}" 

50 410 

b"{'gy': 0, 'gz': 1, 'tem': 
28.84, 'gx': -4, 'ax': 0.06, 
'ay': -0.0, 'az': 0.86}" 

50 406 

b"{'gy': 0, 'gz': 0, 'tem': 
28.88, 'gx': -4, 'ax': 0.07, 
'ay': -0.009999999, 'az': 
0.87}" 

48 410 

b"{'gy': 0, 'gz': 1, 'tem': 
28.93, 'gx': -4, 'ax': 0.06, 
'ay': -0.009999999, 'az': 
0.86}" 

56 406 
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2.4 Avalanche effect 

To assess the avalanche effect, the same plaintext is encrypted twice, with only a single-bit change in the nonce. The 
resulting ciphertexts are compared, and the number of differing bits quantifies the effect. 

TABLE III.  AVALANCHE EFFEECT 

N
o 

Nonce 
Modifi
ed 
Nonce 

Plaintext Ciphertext Mod Ciphertext 
Avalanc
he (%) 

1 

b'\xb72
L\xc3~
g;\xd9\
x86\xa
7 +' 

b'\xb72
\xcc\xc
3~g;\xd
9\x86\x
a7 +' 

b"{'gy': 
0, 'gz': 0, 
'tem': 
28.32, 
'gx': -4, 
'ax': 0.06, 
'ay': 0.0, 
'az': 
0.87}" 

bytearray(b'\x9a\xb
0\x00\x8b\x13\xaa0
jL\xd5\x8c\x0b\x1f\
xc2\x02\x92\xc7\xc
dd\x8b\xca\x93\xd3
\xae2\xaa\xd4^\xb8\
xe3\xc5j\xb1\xdb\x
995\xc4\xb3\x82\x9
f*dN\x1f\x02J\x97x
\xa7\xa4\x08]\xfd\x
11\xff\xe7\xdb\x85
pw\xa8\xa9\x8cN%
y\xb8\x1d\x99\xa5\
xb6\x1e\xbd\xa3\x0
3\xe6\xe0') 

 
bytearray(b"q\x0b\xa
0\x8e\x19\xfc\xb8r\x
c3y\xfa\x07\\\xc1\x0c
\x19\xd9\xbb\xabl\xc
0O\x1d\xa1l\x13}1E\
x99'C\xf5,\xd9\xfes\x
c8\xcb\x1e\x96\x95\x
fb\xcd\x08\x99l\x99
K\xf9\xa0N>\xef\xb4
\x8e+\xd4\xe5\xe0W
7E&^C\xf9J\xfe\x9f!'
\xd7\x00\xaf8E") 

53.08442 

2 

 
b'\xc8\
xb0\xb
a\x06\x
c2\xc4\
xfc\x0e
\xf2\xf
5\x10\x
ec' 

b'\xe8\
xb0\xb
a\x06\x
c2\xc4\
xfc\x0e
\xf2\xf
5\x10\x
ec' 

b"{'gy': 
0, 'gz': 1, 
'tem': 
28.84, 
'gx': -4, 
'ax': 0.06, 
'ay': -0.0, 
'az': 
0.86}" 

 
bytearray(b'c\xf2\xa
1\x8fG}\xb9\x9a\xb
1\x99\xe5\x9c\xb4\
xdd\xbf\xe0q\x91J\
x19\xc8,\x80K.\x1b
\xc9\x98\x1f\xa6eT
\xa6m\xca\x02\xe3\
x97Dp\x86\x1b\x9a
\xb6\xd1m\xaa*X\x
05bg8\x81\xe8\xc9
k\x0f 
K\x9b\xea\xe0\xb9\
xac\xbb\x8d\xe4\xc
cD\xb3\xa61\xdb5x
\xfd\xe6') 

 
bytearray(b'\x8b\x98
Y\x8a\x99=%h\xa8\x
f3+\xecfe\xa9\xa59}\
xd7:\x10Jj\xa7\xc9\x
07\x1f^\xf2)D\x84\'A
\xf4\x91\xe0\xf2"r\xc
b\xd3o\x9b\xe9\x18\x
8c\xaf\xf2X\x83\xf6\
xd7\x90\xe7\x9e\x7f\
xa17\xbbM\xf8\xd4\x
d9\xb3uR\xfd\x07\x1
0\xba\xbb\x85f\x05\x
d0\xa7\r') 

48.55769 

 

While the table above showcases only two examples, we conducted 10 experiments. The average avalanche effect of 
ChaCha20-poly1305 in this experiment is 50,526%, indicating a significant change in ciphertext with small plaintext 
modifications. 

 



Securing the Internet of Battlefield Things with ChaCha20-Poly1305 Encryption Architecture for Resource-Constrained Devices 
 

 
 
Vol. 42 No. 2 January 2024              ISSN: 2509-0119 553 

2.5 Encryption and decryption speed 

This analysis explores the crucial relationship between data size and encryption/decryption speed. Understanding how 
data length impacts algorithm performance is vital for selecting the optimal solution for real-world applications, where data 
volumes and processing demands can vary greatly. 

TABLE IV.  ENCRYPTION AND DECRYPTION TIME  RESULT 

Plaintext 
Length 
(bytes) 

Encryption 
Time (ms) 

Decryption 
Time (ms) 

16 261 266 

32 262 266 

64 265 279 

128 402 409 

256 666 672 

512 1208 1218 

1028 2278 2419 

2048 4424 4468 

4096 8762 8802 

8192 17472 17598 

 

The table shows how long it takes to encrypt and decrypt data when the data size changes. As the data gets bigger (from 
16 bytes to 8192 bytes), it takes longer to encrypt and decrypt it. This makes sense, because the encryption algorithm has to work 
harder with more data. 

2.6 Throughput 

This section analyzes the throughput of the tested encryption system. Throughput quantifies the system's data processing 
speed and is calculated by dividing the plaintext length by the encryption/decryption time. These experiments employed a range 
of plaintext lengths, from 16 bytes to 8192 bytes, to provide a comprehensive understanding of the system's performance across 
different data sizes. Encryption and decryption times were measured in milliseconds for each experiment.  

TABLE V.  THROUGHPUT  RESULT 

Plaintext 
Length 
(bytes) 

Encryption 
Time (ms) 

Decryption 
Time (ms) 

Throughput 
Encryption 
(Bps) 

Throughput 
Decryption 
(Bps) 

16 261 266 61.30268199 60.15037594 

32 262 266 122.1374046 120.3007519 

64 265 279 241.509434 229.390681 

128 402 409 318.4079602 312.9584352 

256 666 672 384.3843844 380.952381 

512 1208 1218 423.8410596 420.3612479 
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1028 2278 2419 451.2730465 424.9689955 

2048 4424 4468 462.9294756 458.3706356 

4096 8762 8802 467.4731796 465.3487844 

8192 17472 17598 468.8644689 465.507444 

 

From the data in the table, it can be seen that as the length of the plaintext increases, the time taken to perform the 
encryption and decryption processes also increases. However, the throughput does not decrease in proportion to the increase in 
plaintext size; this indicates that the encryption and decryption efficiency remains relatively stable despite the increase in 
workload. 

V. CONCLUSION 

This research investigated the use of a ChaCha20-Poly1305 to secure data transmission from Unmanned Ground 
Vehicles (UGVs) using a Raspberry Pi Pico microcontroller. A high avalanche effect exceeding 50,526% indicates significant 
ciphertext changes even with minor plaintext alterations, enhancing security against pattern-based deciphering attempts. While 
encryption and decryption times increased with larger data sizes, throughput remained stable, suggesting good efficiency for 
handling varying data loads. A trade-off between data size and throughput might be necessary depending on the application's 
specific needs, with smaller data sizes preferred for real-time processing or low latency situations. Overall, the chosen 
encryption system offers a blend of strong security, scalable performance, and efficient processing, making it a viable solution 
for securing UGV data transmissions on the Raspberry Pi Pico platform. However, further optimization or adjustments might be 
necessary depending on the specific requirements and constraints of the intended application. 
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