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Abstract— This study aims to develop a simplified dataset for more effective market prediction, focusing on the Forex trading of
XAUUSD (Gold/USD). The dataset was gathered from the TradingView platform, covering the period from March 4, 2023, to
December 21, 2023. The data collection method involved intensive observation of daily and weekly charts, utilizing Daily and Weekly
Moving Average (MA) indicators and the concept of breakout. The analysis focused on measuring the distance between the Daily MA at
the beginning and end of the period (start and stop), and utilizing this data for entry strategy in the following three time periods. The
trading strategy adopted involves the simultaneous use of Buy and Sell orders, with a Stop Loss (SL) to Take Profit (TP) ratio of 1:2. TP
was adjusted to accommodate aggressive price movements, while SL remained constant. The collected data was meticulously recorded
and stored in Excel format for further analysis.

With the prepared dataset, this research applies two AI models, Logistic Regression and Decision Tree, to predict the best trading
decision — Buy or Sell. The study aims not only to create a useful dataset for market prediction but also to compare the effectiveness of
two different AI methods in the context of Forex trading of XAUUSD. The results are expected to provide insights into which model is
more accurate and efficient in analyzing and predicting market trends, with practical implications for traders and market analysts.
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I. INTRODUCTION

According to Bisnis.com, the stock market and foreign exchange, or FOREX market, are among the most popular financial
markets in the world of investing. Investments in these two markets can yield high returns but also come with high risks. The
primary activity in both markets is trading [1]. Weerathunga and Silva [2] suggest that the FOREX market is one of the largest
in the world. Foreign exchange involves simultaneous buying and selling of foreign currencies. These transactions are typically
executed in pairs [3]. The FOREX market is the largest financial market, with daily transaction values exceeding 2 trillion US
dollars. Unlike traditional financial markets with physical locations, the FOREX market operates electronically through
networks of banks, companies, and individual traders. Additionally, it functions 24 hours a day during business days [3].
Foreign exchange trading not only involves foreign currencies but also encompasses commodities such as Gold, Silver, and Oil.
Among these, gold is one of the most valuable commodities globally [4]. As stated by Astonacci.com, gold ranks as one of the
strongest investments after the USD [5]. Investors have begun to trade gold against foreign currencies, including the Euro,
Swiss Franc, Australian Dollar, and notably against the USD. The high risk associated with FOREX trading has motivated many
researchers to develop robust models for predictive analysis.

In the dynamic spheres of FOREX and commodities trading, particularly in the XAUUSD (Gold/USD) market, the creation of
predictive datasets has become a cornerstone of financial analytics. This process has evolved from the early stages of electronic
trading, where manual data collection was the norm. Traders and analysts would meticulously record market dynamics, focusing
on key indicators such as price movements and trading volumes. This traditional approach laid the groundwork for
understanding complex market behaviors, paving the way for the development of effective trading strategies.

Backtesting is a critical method in this context, serving as a bridge between historical market analysis and the formulation of
reliable trading strategies. It involves a retrospective examination of market data, with a focus on indicators like Daily and
Weekly Moving Averages (MAs) and breakout patterns. The primary goal of backtesting is to determine the probability of
various trading outcomes and to calculate the win-rate of different strategies. This method allows traders to simulate trading
strategies against historical data, offering a risk-free environment to gauge their potential effectiveness. A successful backtest
provides a solid foundation for a trading strategy, indicating its feasibility and the associated risks, win-rates, and probabilities.
This step is crucial for any trader seeking to develop a robust approach to the market.

Once a trading strategy has passed the backtesting phase with promising probabilities and win-rates, the integration of Artificial
Intelligence (Al) becomes a logical next step. Al models, such as Logistic Regression and Decision Tree models, are employed
to further refine these strategies. By applying Al, traders aim to enhance the predictive power of their strategies, potentially
increasing their effectiveness. The use of Al in this context is not just about enhancing returns; it also serves as a test to validate
whether the back tested strategies align with the complex, real-world market dynamics. The expectation is that Al can provide a
more nuanced and sophisticated analysis, leading to better-informed trading decisions. This study, therefore, not only explores
the effectiveness of traditional backtesting methods but also investigates the impact of Al integration on the overall performance
and reliability of trading strategies in the XAUUSD market.

II. LITERATURE REVIEW

Research on FOREX, not only uses a machine learning approach but also uses a model from Reinforcement learning (RL) as
done by [6] using RL to predict FOREX, which uses a values-based approach and a policy-based approach. [7] uses the Deep
learning method to improve prediction results on the stock market with several technical analyzes, namely Stochastic %K,
Stochastic %D, Momentum, Rate of Change, William's %R, A/D Oscillator, and Disparity 5. [8] used the Long-Short Term
Memory (LSTM) model with the Forex Loss Function (FLF-LSTM) indicator in making predictions on FOREX. Based on the
results of the research, the approach of the FLF-LSTM model was able to reduce the error by 13% when compared to using the
ARIMA indicator. Research on FOREX with commodities was also carried out by [9] using the Deep Reinforcement Learning
approach, which succeeded in proving that Deep Reinforcement Learning can increase the ability to trade automatically. Other
indicators were also introduced by [10] in predicting the movement of stock market prices using deep learning with engineering
features. The method introduced by [10] is a Multi-Filter Neural Network (MFNN) with financial time series features and price
movement prediction. This pilot study aims to see a model from machine learning that has a fairly high level of accuracy in
making FOREX predictions. [11] comparing the moving average convergence/divergence (MACD) indicator with the faster
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take profit signal feature with the simple MACD indicator and the results obtained between both MACD does not have a
significant difference. [12] introduces LR2GBDT, a new method that combines logistic regression (LR) with gradient boosted
decision trees (GBDT) to forecast stock index changes. This approach aims to improve prediction accuracy in stock market
trading. [13] focuses on predicting financial distress in companies using decision tree methods and logistic regression. It
examines data from the Taiwan Stock Exchange and finds that decision trees are more accurate for short-term predictions, while
logistic regression performs better in the long-term. The study highlights the effectiveness of combining Al methods with
traditional statistical approaches in financial distress prediction. [14] explores the use of data mining techniques for predicting
stock prices, focusing on both technical and fundamental information. The authors develop a framework for classifying
industrial stock performances and design a trading strategy. Their methodology aims to outperform the Australian market.
Simulation results show that their selected stock portfolios exceed the Australian All-Ordinaries Index, demonstrating the
effectiveness of their analytical approach in stock selection and trading strategy.

III. RESEARCH METHOD

This study employs a comprehensive backtesting methodology, utilizing historical data from the XAUUSD (Gold/USD) market,
obtained from the TradingView platform. The data encompasses a specific period from March 4, 2023, to December 21, 2023.
Central to this methodology are the Daily and Weekly Moving Average (MA) indicators and breakout patterns, which are
instrumental in the formation of the dataset. The backtesting approach involves a detailed analysis of three preceding time
periods to inform each trading decision. This historical examination is integral in determining the Stop Loss (SL) and Take
Profit (TP) thresholds and in identifying the starting price for each trading instance. A unique aspect of this strategy is the
simultaneous execution of buy and sell orders, adhering to a risk-reward ratio of 2:1 for TP and SL. Notably, the TP is flexible
to adjust to market fluctuations, whereas the SL is fixed, ensuring consistent risk management.

The progression of each trade is meticulously monitored and documented, extending over the subsequent three time periods.
This documentation includes critical information such as entry and exit points, attainment of TP or SL, and the overall duration
of each trade. Such comprehensive data collection is vital for capturing the nuances of market behavior under the applied
trading strategy. All collected data for this study have been meticulously gathered and systematically logged in an Excel
spreadsheet, resulting in the creation of a comprehensive dataset that encompasses the entire duration of the defined research
period. This dataset not only acts as a rich historical archive, detailing market reactions to the various strategies implemented,
but it also forms the foundational platform for subsequent, more in-depth analysis. This further analysis leverages cutting-edge
Artificial Intelligence (AI) techniques, offering a sophisticated approach to interpreting and understanding the data. The
underlying structure and approach of this study are visually represented and can be comprehensively understood by examining
the framework depicted in the figure provided below:
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Fig 1: Framework XAUUSD prediction
The framework provided outlines a structured approach to analyzing and predicting stock market performance, specifically
applied to the XAUUSD pair on the TradingView platform. It begins with a period of observation, where market behaviors and
trends are closely monitored. From this observational data, two distinct predictive paths are followed. The first path employs a
straightforward technique, utilizing buy and sell signals to inform predictions. These signals are compiled into a simple dataset,
which is then analyzed to yield Result A. This result likely represents the effectiveness of a basic trading strategy based solely
on these direct signals.

In parallel, the second path takes a more refined analytical approach. It harnesses advanced statistical models, namely logistic
regression and decision tree models, to predict market movements. This sophisticated method integrates a broader range of data,
potentially encompassing both technical and fundamental analysis, to create a more comprehensive prediction model. The
analysis of this complex dataset leads to Result B, which is indicative of the performance of a more nuanced trading strategy.
Ultimately, the framework compares the outcomes of both methodologies—Result A from the simple buy/sell strategy and
Result B from the advanced model-based strategy—to determine which provides a more accurate forecast of stock performance,
offering insights into the potential benefits of integrating complex analytical techniques in stock market predictions.
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Fig 2: Natural Simple Dataset XAUUSD Fig 3: Modification Simple Dataset XAUUSD for LR & DT
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In this study, we have crafted a Python-based predictive program that incorporates two distinct models: Logistic Regression and
Decision Tree, tailored for analyzing a dataset from the XAUUSD market. This dataset is meticulously curated through a
detailed backtesting process using TradingView data, focusing on crucial indicators like Daily and Weekly Moving Averages
and breakout patterns. The program is designed to intake specific market parameters — 'start', 'stop', Stop Loss (SL), Take Profit
(TP), and a binary 'prediction’ indicator — ensuring alignment with the dataset’s structure for effective processing. The program
features the Logistic Regression model, implemented using Python's scikit-learn library for its effectiveness in binary
classification tasks, and the Decision Tree model, known for its interpretability and capability in handling non-linear
relationships. The output generated includes a binary 'Result' from the Logistic Regression model, indicating the predicted
market direction, and a 'Percentage’ from the Decision Tree model, representing the prediction's confidence level. A critical
addition to this program is a user-friendly form for entering new data for real-time predictive analysis. This functionality allows
users to feed fresh market data into the models, enabling on-the-spot predictions. Moreover, the program plays a pivotal role in
testing the validity and accuracy of the data. Each prediction made by the program is meticulously recorded and stored. This
stored data facilitates a crucial comparative analysis to evaluate the growth in prediction accuracy. The study aims to compare
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the percentage growth in prediction accuracy between the initial manual dataset formation and the predictions made using the
Al-powered Logistic Regression and Decision Tree models. This comparison is vital to assess the added value and efficacy of
Al models in enhancing the predictive analysis of the XAUUSD market. Through this methodological approach, the program
not only serves as a tool for current market analysis but also establishes a framework for assessing the evolution and
improvement in market prediction techniques. By comparing the manually formed dataset predictions with those generated by
advanced Al models, the study seeks to highlight the progression and potential of Al integration in financial market analysis.
This comprehensive methodology underscores the importance of Al in elevating the accuracy and reliability of predictive

models in Forex trading. For a visual representation, see the figure below:
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-t tkinter tk A i rt pandas zs pd
tkinter sklearn.model selection “T train test split
sklearn,linear model ir t LogisticRegression
sklearn.tree import DecisionTreeClassifier
from joblib import
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predicted percentage = decision tree model.predict (input data) [0] IDD?SE%C—NDGEI __Lﬂgm“?kegmssmnn .
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Fig 3: building models Fig 3: Prediction form
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IV. RESULT AND DISCUSSION

by presenting a thorough and detailed examination of the results obtained from our investigative modeling efforts. this research
has led to the exploration and comparison of two different predictive modeling paradigms. On the one hand, we have what we
call the "buy and sell of Model" predictive approach, a method that represents an early attempt at Predictive Analytics in this
domain. On the other hand, a more advanced approach combines Logistic Regression methodologies and robust decision tree
models. not only to present an enumeration of the findings from these two approaches, but also to offer an in-depth analysis by
juxtaposing the performance of each. Through a lens that focuses on a variety of key performance indicators, including
accuracy, precision, recall, F1 score, and the total number of correct and incorrect predictions, we seek to uncover the strengths
and limitations of each model. Our discussion is designed to go beyond surface-level metrics, seeking to provide an
understanding of what these results mean in the broader context of predictive modeling. We believe that this analysis will not
only validate the effectiveness of the chosen methodology but also shed light on the way forward for future research in this
exciting and growing field.

TABLE 1. TESTING RESULTS
Prediction of Model
Metric
Buy & Sell | Logistic Regression & Decision Tree
Accuracy 45.00% 92.65%
Precision 51.43% 92.31%
Recall 45.57% 94.74%
F1-Score 48.32% 93.51%
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Total Predictions 140 68
Correct Predictions 63 63
Incorrect Predictions 77 5

The comparative analysis of the two models, namely the "Observation of Model" and the "Logistic Regression & Decision
Tree" model, reveals compelling insights into their respective performances across various metrics. The most notable difference
lies in accuracy, where the combined model demonstrates exceptional performance at 92.65%, more than double the accuracy of
the Observation of Model, which stands at 45.00%. This stark contrast underscores the enhanced predictive prowess of the
Logistic Regression + Decision Tree model, indicating a substantial improvement in its ability to correctly interpret and forecast
outcomes. Moving beyond accuracy, precision, and recall metrics further illuminate the superiority of the combined model. It
achieves impressively high scores in both precision and recall, showcasing its effectiveness in identifying positive outcomes
accurately while minimizing false positives. These metrics emphasize the refined capability of the Logistic Regression &
Decision Tree model to sift through data accurately, ensuring that its predictions are both relevant and reliable.

Examining the F1-Score, a harmonized mean of precision and recall, reinforces the superiority of the combined model, boasting
a score of 93.51% compared to 48.32% for the Observation of Model. This superior F1-Score reflects the balanced and nuanced
approach of the combined model in handling the trade-off between precision and recall, ensuring a more rounded and reliable
predictive performance. Delving into prediction analysis adds an intriguing dimension to the study. Despite making significantly
fewer predictions (68 compared to 140 by the Observation of Model), the Logistic Regression & Decision Tree model achieves
an equal number of correct predictions (63) while drastically reducing the number of incorrect predictions (only 5 compared to
77 by the Observation of Model). This remarkable efficiency underscores the model's ability to make more accurate predictions
with less data, highlighting its potential in reducing the cost and time associated with processing large volumes of data in real-
world applications. The findings collectively emphasize the robustness, reliability, and efficiency of the Logistic Regression +
Decision Tree model in comparison to the Observation of Model.

V. CONCLUSION

In the examination of this predictive model, it was found that the Logistic Regression & Decision Tree model consistently
outperforms the "Buy & Sell" model across various prediction metrics. The superior accuracy, precision, and recall
demonstrated by the combined model provide in-depth insights into its predictive capabilities. This superiority reflects the
maturity of the underlying concepts and methodologies, yielding superior results in predictive modeling. From a more practical
standpoint, these findings signify a significant contribution to the understanding and application of the Logistic Regression &
Decision Tree model. The depth of analysis of prediction metrics indicates that this model not only delivers accurate predictions
but also has the ability to navigate the complex trade-offs between precision and recall, resulting in an F1-Score that reflects
careful balance.

The model's reliability and predictive efficiency can inspire further research into its internal understanding, results
interpretation, and practical applications across various fields. These findings offer a new perspective in concrete data analysis
and contribute to sustainable development in predictive modeling. Researchers may explore additional variables, apply the
model in diverse contexts, optimize its performance, or integrate it with cutting-edge technologies for enhanced accuracy and
efficiency.
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