International Journal of Progressive Sciences and Technologies (IJPSAT)

On Ramsey Minimal Graphs For (P_{4}, P_{n}), For $n \geq 5$

Nailul Yuni Permataputri, Lyra Yulianti, Des Welyyanti
Department of Mathematics and Data Science, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Campus of UNAND Limau Manis Padang-25163, Indonesia
nailuyuni@gmail.com

(cc) EY

Abstract

For given two graphs G and H, the notation $F \rightarrow(G, H)$ means that any red-blue coloring of all the edges of F contains a red copy of G as a subgraph or a blue copy of H as a subgraph. A graph F is Ramsey (G, H)-minimal if $F \rightarrow$ (G, H) and for any edge e in F then $F-\mathbf{e} \nrightarrow(G, H)$. The class of all (G, H)-minimal graph, is denoted by $\mathcal{R}(G, H)$. In this paper, some graph in $\mathcal{R}\left(P_{4}, P_{5}\right)$ are $\mathbf{o b t a i n e d}$. Then, a graph in $\mathcal{R}\left(P_{4}, P_{n}\right)$ for even $n, n \geq 6$ and a graph in $\mathcal{R}\left(P_{4}, P_{n}\right)$ for odd $n, n \geq 7$ is also obtained.

Keywords - Ramsey minimal graph; path graph; cycle graph; complete graph

I. INTRODUCTION

All graphs considered in this paper are simple, finite, and undirected. Let G and H be two graphs. We write $F \rightarrow(G, H)$ if any red-blue coloring of the edges of F implies that either F contains a red subgraph G or a blue subgraph H. Graph F is Ramsey (G, H)minimal if $F \rightarrow(G, H)$ but $F^{*} \nrightarrow(G, H)$ for any proper subgraph $F^{*} \subset F$. The class of all minimal graph is denoted by $\mathcal{R}(\mathrm{G}, \mathrm{H})$ [6].

There are some previous results for Ramsey (G, H)-minimal graphs, for some G and H . Baskoro and Wijaya [1] determined some graphs in $\mathcal{R}\left(2 K_{2}, C_{4}\right)$. Muhsi and Baskoro [10] determined the graph in $\mathcal{R}\left(2 K_{2}, P_{3}\right)$. Baskoro and Yulianti [2] gave some characterization of graphs in $\mathcal{R}\left(2 K_{2}, P_{n}\right)$ for $n \geq 2$, where P_{n} is a path graph on n vertices. Wijaya et al. [16] determined subdivision of graph in $\mathcal{R}\left(m K_{2}, P_{4}\right)$. Next, Wijaya et al. [15], [17] gave complete list of graphs in $\mathcal{R}\left(2 K_{2}, K_{4}\right), \mathcal{R}\left(2 K_{2}, C_{4}\right)$. Mengersen and Oeckermann [9] discussed about Ramsey set for matching.

In [8] the graphs belonging to $\mathcal{R}\left(2 K_{2}, K_{1, n}\right)$ for $n \geq 3$ were characterized. Borowiecki et al. [5] determined the graphs in $\mathcal{R}\left(K_{1,2}, C_{3}\right)$. Then, Borowiecki et al. [4] gave some characterization of all graphs in $\mathcal{R}\left(K_{1,2}, C_{4}\right)$. Tatanto and Baskoro [13] determined the graphs belonging to $\mathcal{R}\left(2 K_{2}, 2 P_{n}\right)$, for $n \geq 2$. Baskoro et al. [3] gave an infinite family belonging to $\mathcal{R}\left(K_{1,2}, C_{4}\right)$.

Vetrik et. al. [14] determined some class of graphs belonging to $\mathcal{R}\left(\mathrm{K}_{1,2}, \mathrm{C}_{4}\right)$, where $\mathrm{K}_{1,2}$ is a star graph on 3 vertices and C_{4} is a cycle graph with 4 vertices. Then, Yulianti et. al. [18] determined some graphs in $\mathcal{R}\left(\mathrm{K}_{1,2}, \mathrm{P}_{4}\right)$, where P_{4} is a path graph on 4 vertices. Haluszczak [7] studied the graphs belonging to $\mathcal{R}\left(\mathrm{K}_{1,2}, \mathrm{~K}_{\mathrm{n}}\right)$, where K_{n} is a complete graph on n vertices. Rahmadani et. al. [11] determined some graphs in $\mathcal{R}\left(\mathrm{P}_{3}, \mathrm{P}_{6}\right)$. Then, Rahmadani and Nusantara [12] determined some graphs in $\mathcal{R}\left(\mathrm{P}_{4}, \mathrm{P}_{4}\right)$.

A path P_{n} is a connected graph with n vertices and $n-1$ edges, where its end vertices have one degree and the others have two degree. In this paper, we will determine some graphs in the class of Ramsey minimal for $\mathcal{R}\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$, for $\mathrm{n} \geq 5$.

II. MAIN RESULT

In Theorem 1 we determine some graphs that belongs to $\mathcal{R}\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$
Theorem 1. Let P_{4} and P_{5} be two paths on 4 and 5 vertices. Let F_{1}, F_{2}, F_{3} and F_{4} be the graphs in Figure 1. , then $\left\{F_{1}, F_{2}, F_{3}, F_{4}\right\} \subseteq$
$\mathcal{R}\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$.

F_{1}

F_{2}

F_{3}

F_{4}

Figure 1. $F_{1}, F_{2}, F_{3}, F_{4}$

Proof. Let P_{4} and P_{5} be two given graphs. We will show that (1). $F_{1} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right),(2) . F_{1} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$. The proof for F_{2}, F_{3}, F_{4} as similar to F_{1}. Consider the following cases.

Case 1. First, we prove that $F_{1} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$. Consider any red-blue coloring of all edges of F_{1} containing no red P_{4}. If F_{1} does not contain red P_{4}, then the red subgraph will be in the form of $K_{1,4}, C_{3} \cup P_{3}, C_{3}, 3 P_{2}$. Consider Figure 2. for all possibilities of coloring against F_{1}, the remaining edges will contain a blue P_{5} as in Figure 2. Thus, $F_{1} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$.

Figure 2. $F_{1} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$
Second, we prove that $F_{1} \backslash \mathrm{e} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$, for any edge e in F_{1}. Consider that if $\mathrm{e}=\mathrm{x}_{1} \mathrm{x}_{6}, \mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{x}_{2} \mathrm{x}_{3}, \mathrm{x}_{3} \mathrm{x}_{4}, \mathrm{x}_{4} \mathrm{x}_{5}$, or $\mathrm{x}_{5} \mathrm{x}_{6}$, then give coloring as in Figure 3 (i). If $e=x_{2} x_{6}, x_{2} x_{4}$ or $x_{4} x_{6}$, then give coloring as in Figure 3 (ii). Obviously, no blue P_{5} as a subgraph. Therefore, $F_{1} \backslash e \nrightarrow\left(P_{4}, P_{5}\right)$, for any edge e.

Figure 3. $F_{1} \backslash \mathrm{e} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$
Case 2. First, we show that $F_{2} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$. Consider any red-blue coloring of all edges of F_{2} containing no red P_{4}. If F_{2} does not contain red P_{4}, then the red subgraph will be in the form of $C_{3} \cup P_{3}, K_{1,5}, K_{1,3} \cup P_{2}, 3 P_{2}$. Consider Figure 4. for all possibilities coloring against F_{2}, the remaining edges will contain a blue P_{5} as in Figure 4. Hence, $F_{1} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$.

Figure 4. $F_{2} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$
Next, we show that $F_{2} \backslash e \nrightarrow\left(P_{4}, P_{5}\right)$, for any edge e. Consider that if $e=x_{1} x_{5}, x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}$, or $x_{4} x_{5}$, then give coloring as in Figure 5(i). If $e=x_{5} x_{6}, x_{1} x_{6}, x_{2} x_{6}, x_{3} x_{6}$ or $x_{4} x_{6}$, then give the coloring as in Figure 5(ii). Consequently, neither red P_{4} nor blue P_{5} occurs. Therefore, $F_{2} \backslash \mathrm{e} \nrightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$, for any edge e .

Figure 5. $F_{2} \backslash \mathrm{e} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$
Case 3. First, we show that $F_{3} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$. Consider any red-blue coloring of all edges of F_{3} containing no red P_{4}. If F_{3} does not contain red P_{4}, then the red subgraph will be in the form of $K_{1,3} \cup P_{3}, 2 C_{3}, K_{1,4} \cup P_{3}, 2 P_{2} \cup P_{3}, K_{1,4}$. Consider Figure 6. for all possibilities coloring against F_{3}, the remaining edges will contain a blue P_{5} as in Figure 6. Thus, $F_{3} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$.

Figure 6. $F_{3} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$
Second, we prove that $F_{3} \backslash \mathrm{e} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$, for any edge e. Consider that if we remove one edge for any edge e of graph F_{3}, then do the coloring as in Figure 7. This coloring implies that there is no red P_{4} nor blue P_{5}. Therefore, $F_{3} \backslash \mathrm{e} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$, for any edge e in F_{3}.

Figure 7. $F_{3} \backslash \mathrm{e} \nrightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$
Case 4. First, we show that $F_{4} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$. Consider any red-blue coloring of all edges of F_{4} containing no red P_{4}. If F_{4} does not contain red P_{4}, then the red subgraph will be in the form of $K_{1,4}, K_{1,3} \cup P_{3}, 3 P_{3}, 4 P_{2}$. Consider Figure 8. for all possibilities coloring againts F_{4}, the remaining edges will contain a blue P_{5} as in Figure 8. Therefore, $F_{4} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$.

Figure 8. $F_{4} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$
Second, we prove that $F_{4} \backslash \mathrm{e} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$, for any edge e . Consider that if e is one of $\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}+1}$ for $1 \leq \mathrm{i} \leq 7$ or $x_{1} x_{8}$, then give coloring as in Figure 9(i). If e is one of $\mathrm{x}_{\mathrm{i}} \mathrm{x}_{9}$ for $2 \leq \mathrm{i} \leq 8$ and even i , then $F_{4} \backslash \mathrm{e} \nrightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$ as in Figure 9(ii). Clearly, no blue P_{5} as a subgraph. Therefore $F_{4} \backslash \mathrm{e} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$, for all e in F_{4}.

(i)

(ii)

Figure 9. $F_{4} \backslash \mathrm{e} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$
Based on case 1 to case 4 , it is proven that $\left\{F_{1}, F_{2}, F_{3}, F_{4}\right\} \subseteq \mathcal{R}\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$.

In Theorem 2 we determine a graph that belong to $\mathcal{R}\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$, for even $\mathrm{n}, \mathrm{n} \geq 6$
Theorem 2. Let P_{4} and P_{n} be the path graphs on 4 and n vertices, then A_{n} in Figure 10. is a Ramsey minimal graph of $\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$, for even $\mathrm{n}, \mathrm{n} \geq 6$.

Figure 10. Graph A_{n}
Proof. Let P_{4} and P_{n} be two given paths. First, we prove that $A_{n} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$. Consider any red-blue coloring of all edges of A_{n} containing no red P_{4}. If A_{n} does not contain red P_{4}, then the red subgraph will be in the form of $K_{1,3}, C_{3}, K_{1,4}$. Consider Table 1 for all possibilities coloring of A_{n} that does not contain red P_{4} as follows.

Table 1.

Cas es	Incide nt edge	Coloring steps	Illustration
1	x_{1}	1. Give a red color to each incident edges of x_{1}, i.e $x_{1} x_{2}$ and $x_{1} y_{1}$ 2. Color the incident edges to y_{1}, i.e $x_{2} y_{1}$ inred, $y_{1} y_{2}$ in blue 3. Give a blue color to the incident edges of x_{2} 4. Give a red color to the incident edges of y_{2} 5. Color the incident edges to $x_{3}, y_{3}, x_{4}, y_{4}, \ldots, x_{n-2}, y_{n-2}$, respectively by maximizing the red edge as long as it doesn't contain red P_{4}	
2	y_{1}	1. Give a red color to each incident edges of y_{1} 2. Give a blue color to the incident edge of x_{1}, i.e $x_{1} x_{2}$ 3. Give a blue color to each incident edge of y_{2} 4. Color the incident edge to x_{2}, i.e $x_{2} x_{3}$ with red color. 5. Color the incident edges to $y_{3}, x_{3}, y_{4}, x_{4}, \ldots, y_{n-2}, x_{n-2}$, respectively by maximizing the red edge as long as it doesn't contain red P_{4}	
3	y_{3}	1. Give a red color to each incident edges of y_{3} 2. Give a blue color to the incident edges of x_{3}, i.e $x_{2} x_{3}, x_{3} y_{2}, x_{3} x_{4}$. 3. Color the incident edges to x_{3}, i.e $x_{1} x_{2}$ and $x_{2} y_{1}$ in red, $x_{2} y_{2}$ in blue 4. Color the incident edges to y_{2}, i.e $x_{1} x_{2}$ in blue 5. Color the incident edges to $x_{1}, y_{1}, x_{4}, y_{4}, x_{5}, y_{5}, \ldots, x_{n-2}, y_{n-2}$,	

As shown in Table 1 which consists of 4 cases. Color the incident edges, consider the coloring steps and see the illustration.

In any case where A_{n} does not contain a red P_{4}, the remaining edges will contain a blue P_{n}. Hence $A_{n} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$, for even n , $n \geq 6$.

Second, we prove that $A_{n} \backslash \mathrm{e} \nrightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$, for any edge e. Consider the form of coloring in Table 2 for each edges removed.
Table 2.

Remove edge (e)	The form of red subgraph	Illustration	The longest path
$\begin{aligned} & x_{1} y_{1}, x_{n-2} y_{n-2}, \\ & x_{1} x_{2}, \text { or } \\ & y_{n-3} y_{n-2} \end{aligned}$	$\frac{\mathrm{n}-2}{2} \mathrm{C}_{3}$		$\begin{aligned} & y_{2} y_{3} x_{3} x_{4} x_{5} x_{6} \ldots x_{n-4} \\ & y_{n-3} y_{n-4} \end{aligned}$
$\begin{aligned} & y_{1} y_{2} \text { or } \\ & x_{n-3} x_{n-2} \end{aligned}$	$\begin{aligned} & K_{1,4} \\ & \cup \frac{n-4}{2} C_{3} \end{aligned}$		$\begin{aligned} & y_{2} y_{3} x_{3} x_{4} x_{5} x_{6} \ldots x_{n-3} \\ & y_{n-3} y_{n-2} \end{aligned}$
$\begin{aligned} & x_{2} y_{1} \text { or } \\ & x_{n-2} y_{n-3} \end{aligned}$	$\frac{\mathrm{n}-2}{2} \mathrm{C}_{3} \cup \mathrm{P}_{2}$		$\begin{aligned} & y_{1} y_{2} y_{3} y_{4} y_{5} y_{6} \ldots y_{n-4} \\ & y_{n-3} x_{n-3} x_{n-2} \end{aligned}$
$\begin{aligned} & x_{i} y_{i} \text { for } \\ & 2 \leq \mathrm{i} \leq \mathrm{n}-3 \end{aligned}$	$\frac{\mathrm{n}-2}{2} \mathrm{C}_{3} \cup \mathrm{P}_{2}$		$\begin{aligned} & x_{2} x_{3} x_{4} x_{5} x_{6} \ldots x_{n-3} \\ & x_{n-2} y_{n-3} y_{n-2} \end{aligned}$
$\begin{aligned} & x_{i} y_{i-1} \text { for } \\ & 3 \leq \mathrm{i} \leq \mathrm{n}-3 \end{aligned}$	$\frac{\mathrm{n}}{2} \mathrm{C} 3 \cup \mathrm{P}_{2}$		$\begin{aligned} & y_{2} y_{3} y_{4} y_{5} y_{6} \ldots y_{n-3} \\ & y_{n-2} x_{n-2} \end{aligned}$
$\begin{aligned} & x_{i} x_{i+1} \text { for } \\ & 2 \leq \mathrm{i} \leq \mathrm{n}-3 \end{aligned}$ or $y_{n} y_{n+1}$ for $2 \leq \mathrm{n} \leq \mathrm{n}-3$	$\frac{\mathrm{n}-2}{2} \mathrm{C}_{3} \cup \mathrm{P}_{2}$		$\begin{aligned} & y_{3} y_{4} x_{4} x_{5} x_{6} \ldots x_{n-3} \\ & x_{n-2} y_{n-3} y_{n-2} \end{aligned}$

If $A_{n} \backslash$ e, for any edge e, then give the coloring with the form of red subgraph and see the illustration as in Table 2 . Obviously, in the longest path there is no blue P_{n} as a subgraph. Therefore, $A_{n} \backslash \mathrm{e} \nrightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$, for even $\mathrm{n}, \mathrm{n} \geq 6$ for any edge e .

In Theorem 3 we determine a graph that belong to $\mathcal{R}\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$, for odd $\mathrm{n}, \mathrm{n} \geq 7$
Theorem 3. Let P_{4} and P_{n} be the path graphs on 4 and n vertices, then B_{n} in Figure 11. is a Ramsey minimal graph of $\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$, for odd $\mathrm{n}, \mathrm{n} \geq 7$.

Figure 10. Graph B_{n}
Proof. First, we show that $B_{n} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$. Consider any red-blue coloring of all edges of B_{n} containing no red P_{4}. If B_{n} does not contain red P_{4}, then the red subgraph will be in the form of $K_{1,3}, C_{3}, K_{1,4}$. Consider Table 3 for all possibilities coloring of B_{n} that does not contain red P_{4} as follows.

Table 3.

Cas es	Incide nt edge	Coloring steps	Illustration
1	x_{1}	1. Give a red color to each incident edges of x_{1}, i.e $x_{1} x_{2}$ and $x_{1} y_{1}$ 2. Color the incident edges to y_{1}, i.e $x_{2} y_{1}$ in red, $y_{1} y_{2}$ in blue 3. Give a blue color to the incident edges of x_{2} 4. Give a red color to the incident edges of y_{2} 5. Color the incident edges to $x_{3}, y_{3}, x_{4}, y_{4}, \ldots, x_{n-3}, y_{n-3}, x_{n-2}$, respectively by maximizing the red edge as long as it doesn't contain red P_{4}	
2	y_{1}	1. Give a red color to each incident edges of y_{1} 2. Give a blue color to the incident edge of x_{1}, i.e $x_{1} x_{2}$ 3. Give a blue color to each incident edge of y_{2} 4. Color the incident edge to x_{2}, i.e $x_{2} x_{3}$ with blue color. 5. Color the incident edges to $y_{3}, x_{3}, y_{4}, x_{4}, \ldots, y_{n-2}, x_{n-2}, \quad$ respectively by maximizing the red edge as long as it doesn't contain red P_{4}	

3	x_{n-2}	1. Give a red color to each incident edges of x_{n-2} 2. Color the incident edges to x_{n-3}, i.e $x_{n-3} y_{n-3}$ in red, othewise, give a blue color 3. Color the incident edges to y_{n-3}, i.e $y_{n-4} y_{n-3}$ in blue 4. Give a blue color to the incident edges of y_{n-4}, i.e $x_{n-4} y_{n-4}$ and $y_{n-3} y_{n-4}$ 5. Color the incident edges to $x_{n-4}, x_{n-3}, y_{n-3}, y_{n-2}, \ldots, y_{1}, x_{1}$, respectively by maximizing the red edge as long as it doesn't contain red P_{4}	
4	y_{n-3}	1. Give a red color to each incident edges of y_{n-3} 2. Give a blue color to the incident edges of x_{n-3}, i.e $x_{n-4} x_{n-3}, x_{n-3} y_{n-4}, x_{n-3} x_{n-2}$ 3. Give a blue color to the incident edges of y_{n-4} 4. Color the incident edges to $x_{n-4}, y_{n-5}, x_{n-5}, \ldots, y_{1}, x_{1}$, respectively by maximizing the red edge as long as it doesn't contain red P_{4}	
5	x_{4}	1. Give a red color to each incident edges of x_{4} 2. Give a blue color to each incident edges of x_{3} 3. Color the incident edges to x_{2}, i.e $x_{2} y_{1}$ and $x_{2} y_{2}$ in red, otherwise, give a blue color	
6	x_{2}	1. Give a red color to each incident edges of x_{2} 2. Give a red color to each incident edges of y_{4} 3. Give a red color to each incident edges of $x_{6}, y_{8}, x_{19}, y_{12}, \ldots$	

As shown in Table 3 which consists of 6 cases. Color the incident edges, consider the coloring steps and see the illustration.

In any case where B_{n} does not contain a red P_{4}, the remaining edges will contain a blue P_{n}. Thus, $B_{n} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$, for odd n , $\mathrm{n} \geq 7$.

Second, we show that $B_{n} \backslash \mathrm{e} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$, for any edge e. Consider the form of coloring in Table 4 for each removed edges.

Table 4.

Remove edge (e)	The form of red subgraph	Illustration	The longest path
$\begin{aligned} & x_{1} y_{1}, \text { or } \\ & x_{1} x_{2} \end{aligned}$	$\frac{\mathrm{n}-3}{2} \mathrm{C}_{3}$		$\begin{aligned} & y_{2} y_{3} x_{3} x_{4} x_{5} x_{6} \ldots x_{n-3} \\ & x_{n-2} y_{n-3} \end{aligned}$
$x_{2} y_{1}$	$\begin{aligned} & \frac{\mathrm{n}-3}{2} \mathrm{C}_{3} \\ & \cup \mathrm{P}_{2} \end{aligned}$		$\begin{aligned} & y_{1} y_{2} y_{3} y_{4} y_{5} y_{6} \ldots y_{n-4} \\ & x_{n-4} x_{n-3} \end{aligned}$
$y_{1} y_{2}$	$\begin{aligned} & \mathrm{K}_{1,4} \\ & \cup \frac{\mathrm{n}-5}{2} C_{3} \end{aligned}$		$\begin{aligned} & y_{2} y_{3} x_{3} x_{4} x_{5} x_{6} \ldots x_{n-3} \\ & x_{n-2} y_{n-3} \end{aligned}$
$\begin{aligned} & x_{n-3} x_{n-2} \text { or } \\ & x_{n-3} y_{n-3} \end{aligned}$	$\begin{aligned} & \frac{\mathrm{n}-3}{2} \mathrm{C}_{3} \\ & \cup \mathrm{P}_{2} \end{aligned}$		$\begin{aligned} & x_{3} x_{2} y_{2} y_{3} y_{4} y_{5} \ldots y_{n-4} \\ & y_{n-3} x_{n-3} \end{aligned}$
$x_{n-2} y_{n-3}$	$\frac{n-3}{2} C_{3}$		$\begin{aligned} & y_{1} x_{1} x_{2} x_{3} x_{4} x_{5} \ldots x_{n-3} \\ & x_{n-2} \end{aligned}$
$\begin{aligned} & y_{i} y_{i+1} \text { for } \\ & 3 \leq \mathrm{i} \leq \mathrm{n}- \\ & 4 \end{aligned}$	$\frac{\mathrm{n}-3}{2} \mathrm{C}_{3}$		$\begin{aligned} & x_{5} x_{4} y_{4} y_{5} y_{6} \ldots y_{n-4} \\ & y_{n-3} x_{n-2} \end{aligned}$
$\begin{aligned} & x_{i} y_{i} \text { for } \\ & 2 \leq \mathrm{i} \\ & \leq \mathrm{n}-4 \end{aligned}$	$\begin{aligned} & \frac{\mathrm{n}-3}{2} \mathrm{C}_{3} \\ & \cup \mathrm{P}_{2} \end{aligned}$		$\begin{aligned} & x_{2} x_{3} x_{4} x_{5} x_{6} \ldots x_{n-4} \\ & x_{n-3} y_{n-3} y_{n-4} \end{aligned}$
$\begin{gathered} x_{i} x_{i+1} \text { for } \\ 2 \leq \mathrm{i} \\ \leq \mathrm{n}-4 \end{gathered}$	$\begin{aligned} & \frac{\mathrm{n}-3}{2} \mathrm{C}_{3} \\ & \cup \mathrm{P}_{2} \end{aligned}$		$\begin{aligned} & y_{1} y_{2} y_{3} y_{4} y_{5} y_{6} \ldots y_{n-4} \\ & y_{n-3} x_{n-3} x_{n-2} \end{aligned}$

If $B_{n} \backslash \mathrm{e}$, for any edge e, then give the coloring with the form of red subgraph and see the illustration as in Table 4. Consequently, neither red P_{4} nor blue P_{n} occurs. Therefore, $B_{n} \backslash \mathrm{e} \rightarrow\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$, for odd $\mathrm{n}, \mathrm{n} \geq 7$ for any edge e.
III. Conclusions

In this paper, we have obtained some graphs that belongs to $\mathcal{R}\left(\mathrm{P}_{4}, \mathrm{P}_{5}\right)$. Then, we have obtained a graph in $\mathcal{R}\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$ for even n , $\mathrm{n} \geq 6$ and a graph in $\mathcal{R}\left(\mathrm{P}_{4}, \mathrm{P}_{\mathrm{n}}\right)$ for odd $\mathrm{n}, \mathrm{n} \geq 7$ is also obtained.

References

[1] Baskoro, E. T., and Wijaya, K, (2015), On Ramsey ($2 K_{2}, C_{4}$)-Minimal Graphs, Springer Proceedings in Mathematics \& Statistics, 98, pp 11-17.
[2] Baskoro, E. T., and Yulianti, L., (2011), On Ramsey Minimal Graphs for $2 K_{2}$ versus P_{n}, Adv. Appl. Discrete Math, 8, 83-90.
[3] Baskoro, E. T., Yulianti, L., Assiyatun, H., (2008), Ramsey ($K_{1,2}, C_{4}$)-minimal graphs, J. Combin. Mathematics and Combin. Computing, 65, 79-90.
[4] Borowiecki, M., Haluszezak, M., Sidorowicz, E., (2004), On Ramsey ($K_{1,2}, C_{4}$)-Minimal Graphs, Discrete Mathematics, 286, 37-43.
[5] Borowiecki, M., Schiermeyer, I., Sidorowicz, E., (2005), Ramsey ($K_{1,2}, K_{3}$)-Minimal Graphs, Electronic J. Combinatorics, 12, \#R20.
[6] Burr, S. A., Erdos, P., Faudree, R. J., Schelp, R. H., (1978), A class of Ramsey-finite graphs, Congr. Numer, 21, 171-180.
[7] Haluszczak, M., (2012), On Ramsey ($K_{1,2}, K_{n}$)-Minimal Graphs, Discussiones Mathematicae Graph Theory, 32, 331-339.
[8] Mengersen, I., Oeckermann, J., (1999)., Matching-star Ramsey Sets, Discrete Applied Math, 95, 417-424.
[9] Mengersen, I., Oeckermann, J., (2000)., Ramsey Set for Matching, Ars Combinatoria, 56, 33-42.
[10] Muhsi, H., and Baskoro, E. T., (2012), On Ramsey ($3 K_{2}, P_{3}$)-Minimal Graphs, AIP Conference Proceeding, 1450, 110-117.
[11] Rahmadani, D., Baskoro, E.T., Assiyatun, H., (2016), On Ramsey (P_{3}, P_{6})-minimal Graphs, AIP Conference Proceedings, 1707, 020016.
[12] Rahmadani, D., Nusantara, T., (2020), On Ramsey (P_{4}, P_{4})-minimal Graphs for small-order, AIP Conference Proceedings, 2215, 070014.
[13] Tatanto, D., and Baskoro, E. T., (2012), On Ramsey ($2 K_{2}, 2 P_{n}$)-Minimal Graphs, AIP Conference Proceeding, 1450, 90-95
[14] Vetrik, T., Baskoro, E. T., Yulianti, L., (2010), On Ramsey ($K_{1,2}, C_{4}$)-Minimal Graphs, Discussiones Mathematicae Graph Theory, 30, 637-649.
[15] Wijaya, K., Baskoro, E. T., Assiyatun, H., Suprijanto, D., (2015), The Complete List of ($2 K_{2}, K_{4}$)-Minimal Graphs, Electronic Journal of Graph Theory and Applications, 3, 216-227.
[16] Wijaya, K., Baskoro, E. T., Assiyatun, H., Suprijanto, D., (2020), Subdivision of Graphs in $\mathcal{R}\left(m K_{2}, P_{4}\right)$, Heliyon, 6, e03843.
[17] Wijaya, K., Yulianti, L., Baskoro, E. T., Assiyatun, H., Suprijanto, D., (2015), All Ramsey ($2 K_{2}, C_{4}$)-Minimal Graphs, J. Algorithms Comput.,

46, 9-25.
[18] Yulianti, L., Assiyatun, H., Uttunggadewa, S., Baskoro, E.T., (2010), On Ramsey ($K_{1,2}, P_{4}$)-Minimal Graphs, For East Journal of Mathematics Sciences, 40, 23-36.

