The Size Multipartite Ramsey Numbers $m_{j}\left(K_{1, n}, W_{4}\right)$ And $m_{5}\left(P_{n}, W_{4}\right)$

Syafrizal Sy* ${ }^{*}$, Nada Nadifah Ma'ruf ${ }^{2}$, Muhafzan ${ }^{3}$ Department of Mathematics and Data Science, Faculty of Mathematics and Natural Science, Andalas University, Campus of UNAND Limau Manis Padang-25163, Indonesia
*Corresponding Author: syafrizalsy@sci.unand.ac.id
\section*{(cc) EY}

Abstract

For given two any graph H and G, the size multipartite Ramsey number $\mathbf{m}_{\mathrm{j}}(\mathbf{H}, \mathrm{G})$ is the smallest integer \mathbf{t} such that for every factorization of graph $K j \times t:=F 1 \oplus F 2$ so that F_{1} contain H as a subgraph or F_{2} contains G as a subgraph. In this paper, we determine $m_{j}\left(K_{1, n}, W_{4}\right)$ with $j=4,5$ and $m_{5}\left(P_{n}, W_{4}\right)$ for $n \geq 2$ where $K_{1, n}$ denotes a star on $n+1$ vertices, P_{n} denotes a path on n vertices, and W_{4} denotes a wheel on 4 vertices.

Keywords - Paths, Size Multipartite Ramsey Numbers, Stars, Wheels

I. Introduction

Let $G=(V, E)$ be a graph with the vertex-set $V(G)$ and edge-set $E(G)$. All graphs in this paper are finite and simple. Degree of a vertex v is the number of vertices adjacent to v, denoted $\operatorname{deg}(v)$. So, the neighborhood $N(v)$ of a vertex v is the set of vertices adjacent to v in G. The minimum degree and maximum degree of G is denoted by $\delta(G)$ and $\Delta(G)$, respectively. For any set $S \subseteq V(G)$, the induced subgraph $G[S]$ of G by S is the maximal subgraph of G with the vertex-set S. If $e=u v \in E(G)$ then u is called adjacent to v. A graph G is said to be factorable into factors G_{1}, \cdots, G_{n} if these factors are pairwise edge-disjoint and $\cup_{i=1}^{n} E\left(G_{i}\right)=E(G)$. If G is factored into G_{1}, \cdots, G_{n}, then $G=G_{1} \oplus \cdots \oplus G_{n}$, which is called a factorization of G.

A star $K_{1, n}$ is the graph on $n+1$ vertices with one vertex of degree n, called the center, and n vertices of degree 1 . A path P_{n} is the graph on $n \geq 2$ vertices with two vertices of degree 1 , and $n-2$ vertices on of degree 2 . A cycle C_{n} is a 2 -reguler connected graph. A wheel $W_{n} \cong C_{n}+\{x\}$ is a graph on n vertices with the hub x which adjacent to all vertices in C_{n}. Define $a P_{b}$ is a path with a as initial vertex and b as terminal vertex.

The notion of size multipartite Ramsey numbers were introduced by Burger and Vuuren [3] in 2004, and Syafrizal et al. by considering the two factorization of a $K_{j \times t}$ by fixing the size j of the uniform multipartite sets. More precisely, For given two graphs G_{1} and G_{2}, and integer $j \geq 2$, the size multipartite Ramsey numbers $m_{j}\left(G_{1}, G_{12}\right)=t$ is the smallest integer such that every factorization of graph $K_{j \times t}:=F_{1} \oplus F_{2}$ satisfies the following condition: either F_{1} contains G_{1} as a subgraph or F_{2} contains G_{2} as a subgraph. Ramsey numbers of small paths versus cycle of three or four vertices have been studied by Syafrizal Sy [6].

There are only few results on the size multipartite Ramsey numbers $m_{j}(G, H)$. In this paper, we consider a generalization of this concept by releasing completeness requirement in the forbidden graphs as follows. Syafrizal Sy [7] determined the exact values of the size multipartite Ramsey numbers of large path versus wheel on five vertices. The size multipartite Ramsey numbers $m_{j}\left(K_{1, m}, P_{n}\right)$ and $m_{2}\left(K_{1, m}, C_{n}\right)$ was studied by Lusiani et al. [5]. The size multipartite Ramsey numbers $m_{j}\left(K_{1, t}, P_{3}\right)=n$ for
$j, n \geq 3$ studied by Baqi et al. [1]. Furthermore, Baskoro et al. [2] studied size multipartite Ramsey numbers for star and cycle $m_{j}\left(s_{m}, C_{n}\right)$ for $3 \leq n \leq j$ and $m \geq 3$. Effendi et al. [4] determined size multipartite Ramsey numbers for combination path and wheel on four vertices $m_{3}\left(P_{n}, W_{4}\right)$ for $n \geq 3$. The aim of this paper is determined $m_{j}\left(K_{1, n}, W_{4}\right)$ with $j=4,5$ and $m_{5}\left(P_{n}, W_{4}\right)$ for $n \geq 2$. In this note, we prove the following theorem.

II. Size Ramsey Numbers Related To $\mathbf{K}_{\mathbf{1}, \mathbf{n}}$ And $\mathbf{W}_{\mathbf{4}}$

We will determine the size multipartite Ramsey numbers for star versus wheel on 4 vertices as the following theorem.
Theorem 3.1. For positive integer $n \geq 2$,

$$
m_{4}\left(K_{1, n}, W_{4}\right)=\left\{\begin{array}{cl}
2 & \text { for } n=2 \\
3 & \text { for } n=3 \\
\left\lfloor\frac{n-1}{3}\right\rfloor+2 & \text { for } n \geq 4
\end{array}\right.
$$

Proof. We consider three cases as follow.
Case 1. For $n=2$.
The first, we determine the lower bound $m_{4}\left(K_{1,2}, W_{4}\right) \geq 2$. Let $F_{1} \oplus F_{2}$ be the factorization of graph $F=K_{4 \times 1}$ such that F_{1} contains no $K_{1,2}$ as subgraph. We assume that F_{1} contains a perfect matching $M=\left\{a_{11} a_{21}, a_{31} a_{41}\right\}$. Let $a_{21} \in V_{2}$ be a hub of wheel W_{4} and let $N(x)$ be the set of vertices adjacent to x in F_{1}, then $\left|V\left(F_{1}\right) \backslash\left(V_{2} \cup N(x)\right)\right|<\left|V\left(C_{4}\right)\right|$. Clearly that F_{2} contains no W_{4} as a subgraph. Therefore, $m_{4}\left(K_{1, n}, W_{4}\right) \geq 2$.

Next, we will determined of upper bound $m_{4}\left(K_{1,2}, W_{4}\right) \leq 2$. Let $G_{1} \oplus G_{2}$ be any the factorization of $G=K_{4 \times 2}$ such that G_{1} contains no $K_{1,2}$ as a subgraph. We will show that G_{2} contain W_{4} as a subgraph. Let $V_{i}=\left\{a_{i 1}, a_{i 2}\right\}$ for $i=1,2,3,4$ be the partite set of G. Since G_{1} contains no $K_{1,2}$ then $\Delta\left(G_{1}\right) \leq 1$. Assume that G_{1} contains perfect matching $M^{1}=\left\{a_{11} a_{41}, a_{12} a_{21}\right.$, $\left.a_{22} a_{32}, a_{31} a_{42}\right\}$. Suppose partite V_{4} contain vertex $x=a_{42}$ as the center of W_{4}. Hence, these all vertices a_{11}, a_{22}, a_{12}, and a_{32} will form cycle on four vertices where the set of vertices is $C_{4}:=a_{11}, a_{22}, a_{12}, a_{32}, a_{11}$ in G_{2}. As a consequence, G_{2} contain $W_{4}:=C_{4}+\{x\}$ as a subgraph. Therefore, $m_{4}\left(K_{1, n}, W_{4}\right) \leq 2$.

Case 2. For $n=3$.
We will show first that of the lower bound $m_{4}\left(K_{1,3}, W_{4}\right) \geq 3$. Let $F_{1} \oplus F_{2}$ be a factorization of $F=K_{4 \times 2}$ such that F_{1} contains no $K_{1,3}$ as a subgraph. Let $V_{i}=\left\{a_{i 1}, a_{i 2}\right\}$ for $i=1,2,3,4$ be the partite set of F. Thus, F_{1} contains no $K_{1,3}$ as a subgraph. Assume that $F_{1}=2 C_{4}$ with $V\left(C_{4}^{1}\right)=\left\{a_{11}, a_{22}, a_{31}, a_{41}, a_{11}\right\}$ and $V\left(C_{4}^{2}\right)=\left\{a_{12}, a_{21}, a_{32}, a_{42}, a_{12}\right\}$. Take vertex $x \in V_{1}$ as a hub of wheel W_{4} and $N(x)$ is the set of vertices adjacent to x in F_{1}, so that $\left|V(F) \backslash\left(V_{1} \cup N(x)\right)\right|<\left|E\left(C_{4}\right)\right|$. Thus, F_{2} contains no W_{4} as a subgraph. Therefore, $m_{4}\left(K_{1,3}, W_{4}\right) \geq 3$.

Next, to show the upper bound of $m_{4}\left(K_{1,3}, W_{4}\right) \leq 3$. Let $G_{1} \oplus G_{2}$ be the any factorization of $G=K_{4 \times 3}$ such that G_{1} contains no $K_{1,3}$ as a subgraph. We will show that G_{2} contain W_{4} as a subgraph. Let $V_{i}=\left\{a_{i 1}, a_{i 2}, a_{i 3}\right\}$ for $i=1,2,3,4$ be the partite set of G. Since G_{1} contains no $K_{1,3}$, then $\Delta\left(G_{1}\right) \leq 2$. Assume that G_{1} contain C_{12} with $V\left(C_{12}\right)=\left\{a_{11}, a_{23}, a_{33}, a_{13}, a_{21}, a_{42}, a_{32}, a_{12}, a_{41}, a_{22}, a_{43}, a_{31}, a_{11}\right\}$. Suppose vertex $x=a_{21}$ as a hub of wheel W_{4} in G_{2}. Let $N(x)$ be the set of vertices adjacent to x in G_{1}, such that $G_{2}\left[V(G) \backslash\left(V_{2} \cup N(x)\right)\right]$ has 7 vertices. Thus, we have the set of vertices of cycle $C_{4}:=a_{12}, a_{33}, a_{41}, a_{31}, a_{12}$ in G_{2}. So, we have wheel $W_{4}:=C_{4}+\{x\}$ as a subgraph in G_{2}. Therefore, $m_{4}\left(K_{1,3}, W_{4}\right) \leq 3$.

Case 3. For $n \geq 4$.
Suppose $p=\left\lfloor\frac{n-1}{3}\right\rfloor+2$. We will show first the lower bound $m_{4}\left(K_{1, n}, W_{4}\right) \geq p$. Let $F_{1} \oplus F_{2}$ be the any factorization of $F=K_{4 \times(p-1)}$ such that F_{2} contains no W_{4} as a subgraph. Let $V_{i}=\left\{a_{i j}\right\}$ for $i=1,2,3$ and $j=1,2,3,4, \cdots, p-1$ be the partite sets in F. Since F_{2} contains no W_{4} as a subgraph, then the maximal degree is 3 for every $a_{i j} \in V\left(F_{1}\right)$. Suppose vertex
$x \in V_{i}$ is a center of $K_{1, n}$, then clearly that F_{1} contains no $K_{1, n}$ as a subgraph. Since $V(F)=3\left\lfloor\frac{n-1}{3}\right\rfloor$ then $V\left(F_{1}\right)=3\left\lfloor\frac{n-1}{3}\right\rfloor-3<$ $V\left(K_{1, n}\right)$. Therefore, $m_{4}\left(K_{1, n}, W_{4}\right) \geq p$.

Next, to show the upper bound of $m_{4}\left(K_{1, n}, W_{4}\right) \leq p$. Let $G_{1} \oplus G_{2}$ be the factorization of $G=K_{4 \times p}$ such that G_{1} contains no $K_{1, n}$ as a subgraph. We will to show that G_{2} contain W_{4} as a subgraph. Let $V_{i}=\left\{a_{i j}\right\}$ be the partite set of G for $i=1,2,3,4$ and $j=1,2,3,4, \cdots, p$. Since G_{1} contains no $K_{1, n}$, then $\Delta\left(G_{1}\right) \leq n-1$ in G_{1}. Suppose there is exist a one vertex $x \in V_{i}$ as a hub of W_{4} in G_{1}. Let $N(x)$ be the set of all vertices adjacent to x in G_{1}, then $G_{2}\left[V(G) \backslash\left(V_{i} \cup N(x)\right)\right]$ has $3 p-(n-1)$ vertices, and minimum degree $\delta\left(G_{2}\left[V(G) \backslash V_{i} \cup N(x)\right]\right) \geq 3 p-(n-1)$. Since there exist at least four vertices, namely a, b, c, and d will contain cycle C_{4} in G_{2} t at least, then G_{2} contain $W_{4}:=C_{4}+\{x\}$ as a subgraph. Therefore, $m_{4}\left(K_{1, n}, W_{4}\right) \leq p$.
Theorem 3.2. For positive integer $n \geq 2$,

$$
m_{5}\left(K_{1, n}, W_{4}\right)=\left\{\begin{array}{cc}
1 & \text { for } n=2 \\
\left\lfloor\frac{n}{4}\right\rfloor+1 & \text { for } n=8 k+2, k \in \mathbb{Z}^{+} \\
\left\lfloor\frac{n+2}{4}\right\rfloor+1 & \text { for } n \text { others. }
\end{array}\right.
$$

Proof. We consider three cases as follow.
Case 1. For $n=2$.
We will show first the lower bound of $m_{5}\left(K_{1,2}, W_{4}\right) \geq 1$. Let $F_{1} \oplus F_{2}$ be the any factorization of $F=K_{5 \times(1-1)}$. Clearly that $m_{5}\left(K_{1,2}, W_{4}\right) \geq 1$.

Next, to show the upper bound of $m_{5}\left(K_{1,2}, W_{4}\right) \leq 1$. Let $G_{1} \oplus G_{2}$ be the any factorization of $G=K_{5 \times 1}$ such that G_{1} contains no $K_{1,2}$ as a subgraph. We will show that G_{2} contain W_{4} as a subgraph. Let $V_{i}=\left\{a_{i j}\right\}$ for $i=1,2,3,4,5$ be the partite set in G. Since G_{1} contains no $K_{1,2}$, then $\Delta\left(G_{1}\right) \leq 1$. Assume that G_{1} contain a matching $M^{2}:=\left\{a_{21} a_{31}, a_{41} a_{11}\right\}$ such that there exist one vertex $x=a_{11}$ as a center of W_{4}. Since $\left|V\left(G_{1}\right) \backslash x\right|=4$, then there the vertex set of cycle $C_{4}:=a_{21}, a_{51}, a_{31}, a_{41}, a_{21}$ in G_{2}. So, G_{2} will contain $W_{4}:=C_{4}+\{x\}$ as a subgraph. Therefore, $m_{5}\left(K_{1,2}, W_{4}\right) \leq 1$.

Case 2. For $n=8 k+2, k \in \mathbb{Z}^{+}$.
We will show first the lower bound of $m_{5}\left(K_{1, n}, W_{4}\right) \geq\left\lfloor\frac{n}{4}\right\rfloor+1$ for $n=8 k+2, k \in \mathbb{Z}^{+}$. Let $F_{1} \oplus F_{2}$ be the any factorization of $F=K_{5 \times\left\lceil\frac{n}{4}\right\rfloor}$ such that F_{2} contains no W_{4} as a subgraph. Let $V_{i}=\left\{a_{i j}\right\}$ be the partite set of F for $i=1,2,3,4,5$ and $j=1,2,3,4, \cdots,\left\lfloor\frac{n}{4}\right\rfloor$. Since F_{2} contains no W_{4} as a subgraph, then maximal degree is 3 for every $a_{i j} \in V(F)$. Suppose $x \in V_{i}$ is the center of $K_{1, n}$. Since $\operatorname{deg}(F)=4\left\lfloor\frac{n}{4}\right\rfloor$, then $\operatorname{deg}\left(F_{1}\right)=4\left\lfloor\frac{n}{4}\right\rfloor-3<\operatorname{deg}\left(K_{1, n}\right)$. As a consequence, F_{1} contains no $K_{1, n}$ as a subgraph. Therefore, $m_{5}\left(K_{1, n}, W_{4}\right) \geq\left\lfloor\left.\frac{n}{4} \right\rvert\,+1\right.$ for $n=8 k+2, k \in \mathbb{Z}^{+}$.

Next, to show the upper bound of $m_{5}\left(K_{1, n}, W_{4}\right) \leq\left\lfloor\frac{n}{4}\right\rfloor+1$ for $n=8 k+2, k \in \mathbb{Z}^{+}$. Let $G_{1} \oplus G_{2}$ be the any factorization of $G=K_{5 \times\left\lfloor\frac{n}{4}\right\rfloor+1}$ such that G_{1} contains no $K_{1, n}$ as a subgraph. We will show that G_{2} contain W_{4} as a subgraph. Let $V_{i}=\left\{a_{i j}\right\}$ be partite set of G for $i=1,2,3,4,5$ and $j=1,2,3,4, \cdots,\left\lfloor\frac{n}{4}\right\rfloor+1$. Since G_{1} contains no $K_{1, n}$ as a subgraph, then $\Delta\left(G_{1}\right) \leq n-$ 1 for $n=8 k+2$, such that the partite V_{i} contain one vertex $x=a_{i j}$ with $\operatorname{deg}(x)=n-2$ as a hub of W_{4} in G_{2}. Let $N(x)$ be vertex set adjacent to x in G_{1}. Since $G_{2}\left[V(G) \backslash\left(V_{i} \cup N(x)\right)\right]$ is $4\left[\frac{n}{4}\right]+1-(n-2)$ vertices. As a consequence, there are four vertices a, b, c, and d will form cycle C_{4} in G_{2}, such that G_{2} contain $W_{4}:=C_{4}+\{x\}$. Therefore, $m_{5}\left(K_{1, n}, W_{4}\right) \geq\left\lfloor\frac{n}{4}\right\rfloor+1$.

Case 3. For other n.
We will show first the lower bound of $m_{5}\left(K_{1, n}, W_{4}\right) \geq\left\lfloor\frac{n+2}{4}\right\rfloor+1$ for other n. Let $F_{1} \oplus F_{2}$ be the any factorization of $F=K_{5 \times\left[\frac{n+2}{4}\right]}$ such that, F_{2} contains no W_{4} as a subgraph. Let $V_{i}=\left\{a_{i j}\right\}$ be the partite set of F for $i=1,2,3,4$ and $j=1,2$, $3,4, \cdots,\left\lfloor\frac{n+2}{4}\right\rfloor$. Since F_{2} contains no W_{4} as a subgraph, then the maximal degree for $a_{i j} \in V(F)$ is 3 . Since $x \in V_{i}$ is a center of $K_{1, n}$ and $\operatorname{deg}(F)=4\left\lfloor\frac{n+2}{4}\right\rfloor$, then $\operatorname{deg}\left(F_{1}\right)=4\left\lfloor\frac{n+2}{4}\right\rfloor-3<\operatorname{deg}\left(K_{1, n}\right)$. Clearly that, F_{1} contains no $K_{1, n}$ for other n as a subgraph. Therefore, $m_{5}\left(K_{1, n}, W_{4}\right) \geq\left\lfloor\frac{n+2}{4}\right\rfloor+1$ for other n.

Next, to show the upper bound of $m_{5}\left(K_{1, n}, W_{4}\right) \leq\left\lfloor\frac{n+2}{4}\right\rfloor+1$ for other n. Let $G_{1} \oplus G_{2}$ be the any factorization of $G=$ $K_{5 \times\left\lfloor\frac{n+2}{4}\right\rfloor+1}$ such that G_{1} contains no $K_{1,2}$ as a subgraph. To show that G_{2} contain W_{4} as a subgraph, suppose $V_{i}=\left\{a_{i j}\right\}$ for $i=1,2,3,4,5$ and $j=1,2,3,4, \cdots,\left\lfloor\frac{n+2}{4}\right\rfloor+1$ is a partite set of G. Since G_{1} contains no $K_{1, n}$ as a subgraph, then $\Delta\left(G_{1}\right) \leq$ $n-1$ for other n. Suppose $x \in V_{i}$ is a hub of W_{4}. Since $N(x)$ is the set of vertices adjacent to x in G_{1}, then $G_{2}\left[V(G) \backslash\left(V_{i} \cup\right.\right.$ $N(x))]$ has $4\left(\left\lfloor\frac{n+2}{4}\right\rfloor+1\right)-(n-1)$ vertices and $\delta\left(G_{2}\right) \geq 4\left(\left\lfloor\frac{n+2}{4}\right\rfloor+1\right)-(n-1)$. As a consequence, all these vertices a, b, c, and d will form cycle C_{4} in G_{2}, such that G_{2} contain $W_{4}:=C_{4}+\{x\}$ as a subgraph. Therefore, $m_{5}\left(K_{1, n}, W_{4}\right) \leq\left\lfloor\frac{n+2}{4}\right\rfloor+1$.

III. Size Ramsey Numbers Related To $\mathbf{P}_{\mathbf{n}}$ And $\mathbf{W}_{\mathbf{4}}$

We will determine the size multipartite Ramsey numbers for path versus wheel on 4 vertices as the following theorem.
Theorem 4.1. For positive integer $n \geq 2$,

$$
m_{5}\left(P_{n}, W_{4}\right)=\left\{\begin{array}{cl}
1 & \text { for } 2 \leq n \leq 3 \\
2 & \text { for } 4 \leq n \leq 5 \\
\left\lfloor\frac{2 n+3}{5}\right\rfloor & \text { for } n \geq 6
\end{array}\right.
$$

Proof. We consider three cases as follow.
Case 1. For $2 \leq n \leq 3$.
We will show first that the lower bound of $m_{5}\left(P_{n}, W_{4}\right) \geq 1$. Let $F_{1} \oplus F_{2}$ be the any factorization of $F=K_{5 \times(1-1)}$. Clearly that, $m_{5}\left(P_{n}, W_{4}\right) \geq 1$ for $2 \leq n \leq 3$.

To show the upper bound of $m_{5}\left(P_{2}, W_{4}\right) \leq 1$. Let $G_{1} \oplus G_{2}$ be the any factorization of $G=K_{5 \times 1}$ such that G_{1} contains no P_{2} as a subgraph. We will show that G_{2} contain W_{4} as a subgraph. Suppose $V_{i}=\left\{a_{i 1}\right\}$ for $i=1,2,3,4,5$ is a partite set of G. Since G_{1} contains no P_{2} as a subgraph, then G_{1} is contain independent vertices. Clearly that, $\left|V\left(G_{1}\right) \backslash V_{i}\right|=4$, thus G_{2} contain cycle $C_{4}:=a_{11} a_{41} a_{31} a_{51} a_{11}$, so that G_{2} contain W_{4} as a subgraph. Therefore, $m_{5}\left(P_{2}, W_{4}\right) \leq 1$.

Next, to show the upper bound of $m_{5}\left(P_{3}, W_{4}\right) \leq 1$. Let $G_{1} \oplus G_{2}$ be the any factorization of $G=K_{5 \times 1}$ such that G_{1} contains no P_{3} as a subgraph. We will show that G_{2} contain W_{4} as a subgraph. Suppose $V_{i}=\left\{a_{i 1}\right\}$ is a partite set in G for $i=1,2,3,4,5$. Since G_{1} contains no P_{3} as a subgraph, we assume G_{1} contain a matching $M^{2}=\left\{a_{11} a_{31}, a_{51} a_{41}\right\}$. So, there is exist one vertex, namely $x=a_{21}$, as a hub of W_{4}. Since $\left|V\left(G_{1}\right) \backslash V_{i}\right|=4$, then there exist $C_{4}:=a_{11} a_{41} a_{31} a_{51} a_{11}$ in G_{2}. Clearly that, vertex x adjacent to all vertices in G_{2}. Hence, G_{2} contain $W_{4}:=C_{4}+\{x\}$ as a subgraph. Therefore, $m_{5}\left(P_{3}, W_{4}\right) \leq 1$.

Case 2. For $4 \leq n \leq 5$.
We will show first that the lower bound of $m_{5}\left(P_{n}, W_{4}\right) \geq 2$ for $4 \leq n \leq 5$. Let $F \oplus F_{2}$ be the any factorization of $F=$ $K_{5 \times(2-1)}$ such that F_{1} contain no P_{n} as a subgraph. Suppose $V_{i}=\left\{a_{i 1}\right\}$ is the partite set in F for $i=1,2,3,4,5$. Since F_{1} contains no P_{n} as a subgraph and $\left|V\left(F_{2}\right) \backslash V_{i}\right|<\left|V\left(C_{4}\right)\right|$, then clearly that F_{2} contains no W_{4} as a subgraph. Therefore, $m_{5}\left(P_{n}, W_{4}\right) \geq 2$.

Next, to show the upper bound of $m_{5}\left(P_{4}, W_{4}\right) \leq 2$. Let $G_{1} \oplus G_{2}$ be the any factorization of $G=K_{5 \times 2}$ such that G_{1} contain no P_{4} as a subgraph. To show G_{2} contain W_{4}, we consider two the following.

Case 2.1. If $G_{1}=3 K_{3} \cup P_{4}$.
Let $V_{i}=\left\{a_{i 1}, a_{i 2}\right\}$ be the partite set of G for $i=1,2,3,4,5$. Suppose $V\left(K_{3}^{1}\right)=\left\{a_{11}, a_{22}, a_{31}, a_{11}\right\}$, $V\left(K_{3}^{2}\right)=\left\{a_{12}, a_{21}, a_{52}, a_{12}\right\}, V\left(K_{3}^{3}\right)=\left\{a_{32}, a_{41}, a_{51}, a_{32}\right\}$ is a graph $3 K_{3}$ and $V\left(P_{1}\right)=a_{41}$ in G_{1}. Since G_{1} contain no P_{4} as a subgraph, then vertex $V\left(P_{1}\right)=a_{41}$ no adjacent to every vertices in G_{2} such that vertex a_{41} is hub of W_{4}, such that C_{4} $:=a_{12}, a_{22}, a_{15}, a_{31}, a_{12}$ in. Thus, G_{2} contain $W_{4}:=C_{4}+\{x\}$. Therefore $m_{5}\left(P_{4}, W_{4}\right) \leq 2$

Case 2.2. If $G_{1} \neq 3 K_{3} \cup P_{1}$.
Since G_{1} contains no $3 K_{3} \cup P_{1}$, then there is exist x one vertex x with $\operatorname{deg}(x) \leq 1$. Suppose $A=V\left(K_{5 \times 2}\right) \backslash\left(V_{i} \cup N(x)\right)$, such that $|V(A)| \geq 7$. Since $P=a P_{b}$ is longest path in A, then $x a, x b \notin E\left(G_{1}\right)$. Next, Suppose $I=V(A) \backslash\left(V_{a} \cup V_{b}\right)$ is the subset of induce subgraph $G_{1}[A]$. Since $|V(I)| \geq 3$, then there exist at leas two vertices, namely c and d, where $c, d \in\left(G_{1}[I]\right)$. Since $a b, b c, c d, d a \notin E\left(G_{1}\right)$ and $x d, x c \notin E\left(G_{1}\right)$, then these all vertices a, b, c and d will form C_{4} in G_{2} such that G_{2} contain W_{4} $:=C_{4}+\{x\}$. Therefore, $m_{5}\left(P_{4}, W_{4}\right) \leq 2$.

Next, to show the upper bound of $m_{5}\left(P_{5}, W_{4}\right) \leq 2$. Let $G_{1} \oplus G_{2}$ be the any factorization of $G=K_{5 \times 2}$ such that G_{1} contains no P_{5} as a subgraph. We will show that G_{2} contain W_{4} as a subgraph whit two the following cases.

Case 2.3. If $G_{1}=2 K_{4} \cup P_{2}$.
Suppose $V_{i}=\left\{a_{i 1}, a_{i 2}\right\}$ with $i=1,2,3,4,5$ is a partite set in G. Since G_{1} contain $2 K_{4} \cup P_{2}$ as a subgraph, then we may assume that there exist a subgraph $2 K_{4} \cup P_{2}$ with $V\left(K_{4}^{1}\right)=\left\{a_{11}, a_{22}, a_{32}, a_{51}\right\}, V\left(K_{4}^{2}\right)=\left\{a_{12}, a_{21}, a_{41}, a_{52}\right\}$ contain $2 K_{4}$, and $V\left(P_{2}\right)=\left\{a_{31}, a_{42}\right\}$ in G_{1}, such that a_{31} will form a wheel W_{4} whit x a as hub. A consequence, all these vertices $a_{11}, a_{21}, a_{51}, a_{41}$ also no adjacent to all vertex in G_{1}, such that will form cycle C_{4} in G_{2}. Hence, G_{2} contain $W_{4}:=C_{4}+\{x\}$ as a subgraph. Therefore, $m_{5}\left(P_{5}, W_{4}\right) \leq 2$.
Case 2.4. If $G_{1} \neq 2 K_{4} \cup P_{2}$.
Since G_{1} contains no $2 K_{4} \cup P_{2}$, then there exist one vertex x with $\operatorname{deg}(x) \leq 2$. Since $B=V\left(K_{5 \times 2}\right) \backslash\left(V_{x} \cup N(x)\right)$ then $|V(B)| \geq 6$. Since $P=P_{b}$ is the longest of B, then $x a, x b \notin E\left(G_{1}\right)$. Next, since $L=V(B) \backslash\left(V_{a} \cup V_{b}\right)$ where $V(B)$ is a subset of B which induced subgraph by G_{1}, so that $|V(L)| \geq 2$, then there are exist at least two vertices, namely c and d, with $c, d \in\left(G_{1}[L]\right)$. A a consequence, since these all edges $a b, b c, c d, d a \notin E\left(G_{1}\right)$ and $x c, x d \notin E\left(G_{1}\right)$ then these all vertices a, b, c and d will form a cycle C_{4} in G_{2}, such that G_{2} contain $W_{4}:=C_{4}+\{x\}$ as a subgraph. Therefore, $m_{5}\left(P_{5}, W_{4}\right) \leq 2$.
Case 3. For $n \geq 6$.
Suppose $s=\left\lfloor\frac{2 n+3}{5}\right\rfloor$. We will show the upper bound of $m_{5}\left(P_{n}, W_{4}\right) \geq 2$ for ≥ 6. Let $F \oplus F_{2}$ be the any factorization of $F=K_{5 \times(s-1)}$ such that F_{1} consist of two partitions, namely J_{1} and J_{2}, with J_{1} contain complete multipartite graph and J_{2} is complement of J_{1}. Since $\left|V\left(J_{1}\right)\right|=n-1<n$ and $\left|V\left(J_{2}\right)\right|=5\left[\frac{2 n+3}{5}\right\rfloor-(n-1)<n$, then F_{1} contains no P_{n} as a subgraph. Since F_{1} consist of two partitions, then clearly that F_{2} contains no W_{4} as a subgraph. Therefore, $m_{5}\left(P_{n}, W_{4}\right) \geq s$.

Next, to show the upper bound of $m_{5}\left(P_{n}, W_{4}\right) \leq s$. Let $G_{1} \oplus G_{2}$ be the any factorization of $G=K_{5 \times s}$ such that G_{1} contains no P_{n} as a subgraph for $n \geq 6$. Assume that G_{1} contain longest path, namely $P=a P_{b}$. We will show that G_{2} contain W_{4} as a subgraph so that, we consider four possibilities.

Case 3.1. If $V_{a}=V_{b}$ and $V_{c}=V_{d}$.
Let P be the set of vertices in G_{1}, then $A=V\left(K_{5 \times s}\right) \backslash\left(V_{b} \cup N(P)\right)$. Next, Suppose $Q=c Q_{d}$ is the longest path in G_{1} which induced $G[A]$ and $B=V(A) \backslash\left(V_{c} \cup N(Q)\right)$. Since $a c, c b, b d, d a \notin E\left(G_{1}\right)$, then the all vertices a, b, c and d ca be form a cycle C_{4} in G_{2}. Furthermore, since $5\left[\frac{2 n+3}{5}\right]-2(n-1)$ with $\delta\left(G_{2}\right) \geq 1$, so that there is one vertex x in $V\left(G_{2}\right) \backslash\left(V_{b} \cup V_{c}\right)$ such that x adjacent to all edges $a c, c b, b d, d a \in E\left(G_{2}\right)$. As a consequence, G_{2} contain $W_{4}:=C_{4}+\{x\}$ as a subgraph. Therefore, $m_{5}\left(P_{n}, W_{4}\right) \leq s$.

Case 3.2. If $V_{a}=V_{b}$ and $V_{c} \neq V_{d}$.
Let P be the set of vertices in G_{1}, then $A=V\left(K_{5 \times s}\right) \backslash\left(V_{b} \cup N(P)\right)$. Next, Suppose $Q=c Q_{d}$ is the longest path in G_{1} which induced $G[A]$ and $B=V(A) \backslash\left(V_{c} \cup V_{d} \cup N(Q)\right)$. Since $a c, c b, b d, d a \notin E\left(G_{1}\right)$, then all edges $a c, c b, b d, d a$ will form C_{4} in G_{2}. So, since $5\left[\frac{2 n+3}{5}\right]-2(n-1)$ with $\delta\left(G_{2}\right) \geq 1$, such that there is exist one vertex x in $G_{2}\left(V_{b} \cup V_{c} \cup V_{d}\right)$ which this implies of x adjacent to all edges $a d, d b, b c, c a \in E\left(G_{2}\right)$. Hence, G_{2} contain $W_{4}:=C_{4}+\{x\}$ as a subgraph. Therefore, $m_{5}\left(P_{n}, W_{4}\right) \leq s$.

Case 3.3. If $V_{a} \neq V_{b}$ and $V_{c}=V_{d}$
Let P be the set of vertices in G_{1}, then $A=V\left(K_{5 \times s}\right) \backslash\left(V_{a} \cup V_{b} \cup N(P)\right)$. Next, Suppose $Q=c Q_{d}$ is the longest path in G_{1} which induced $G[A]$ and $B=V(A) \backslash\left(V_{d} \cup N(Q)\right)$. Since $a c, c b, b d, d a \notin E\left(G_{1}\right)$, then the all these vertices a, b, c, d will be form cycle C_{4} in G_{2}. Since $5\left[\frac{2 n+3}{5}\right]-2(n-1)$ with $\delta\left(G_{2}\right) \geq 1$, such that there is exist one vertex x in $G_{2} \backslash\left(V_{a} \cup V_{b} \cup V_{d}\right)$ which this implies of x adjacent to all sisi $a c, c b, b d, d a \in\left(G_{2}\right)$. Thus, G_{2} contain $W_{4}:=C_{4}+\{x\}$ as a subgraph. Therefore, $m_{5}\left(P_{n}, W_{4}\right) \leq$ s.

Case 3.4. If $V_{a} \neq V_{b}$ and $V_{c} \neq V_{d}$.
Let P be the set of vertices in G_{1}, then $A=V\left(K_{5 \times s}\right) \backslash\left(V_{a} \cup V_{b} \cup N(P)\right)$. Next, Suppose $Q=c Q_{d}$ is the longest path in G_{1} which induced $G[A]$ and $B=V(A) \backslash\left(V_{c} \cup V_{d} \cup N(Q)\right)$. Since $a c, c b, b d, d a \notin E\left(G_{1}\right)$, such that the all these vertices a, b, c, and d will be form cycle C_{4} in G_{2}. Since $5\left[\frac{2 n+3}{5}\right]-2(n-1)$ with $\delta\left(G_{2}\right) \geq 1$, such that there is one vertex x in $G_{2} \backslash\left(V_{a} \cup V_{b} \cup V_{c} \cup\right.$ V_{d}) which this implies of x adjacent to all vertices $a c, c b, b d, d a \in E\left(G_{2}\right)$. Hence, G_{2} contain $W_{4}:=C_{4}+\{x\}$ as a subgraph. Therefore, $m_{5}\left(P_{n}, W_{4}\right) \leq s$.

IV. Conclusions

In this paper, we obtain the size multipartite Ramsey numbers for $m_{j}\left(K_{1, n}, W_{4}\right)$ for $j=4,5$ and $m_{5}\left(P_{n}, W_{4}\right)$ with $n \geq 2$.

References

[1] Baqi, A. I., Effendi, Syafrizal Sy, Surahmat, and Dafik, "Size Multipartite Ramsey Number For Stars Versus Path On Three Vertices", vol. 101. Far East Journal of Mathematical Science. 2017, pp. 2575-2582.
[2] Baskoro, E. T., Lusiana, A., Syafrizal Sy, and Jayawardene, " On Size Multipartite Ramsey Numbers for Stars versus Cycles", vol. 74. Procedia Computer Science. 2015, pp. 27-31.
[3] Burger A. P., and Van Vuuren, J.H, "Ramsey Numbers In Complete Balance Multipartite Graphs, Part II : Size Numbers", vol. 283. Discreate Math. 2004, pp. 45-49.
[4] Effendi, Ginting, B., Syafrizal Sy, Surahmat, and Dafik, "The Size Multipartite Ramsey Numbers of Large Paths Versus Small Graph", vol. 102. Far East Journal of Mathematical Science. 2017, pp. 507-514.
[5] Lusiani, A., Baskoro, E. T., and Saputro, S. W, "On Size Multipartite Ramsey Numbers For Stars and Cycle", vol. 1. Electronic Journal of Graph Theory and Applications. 2017, pp. 43-50.
[6] Syafrizal Sy, "On Size Multipartite Ramsey Numbers For Paths Versus Cycle of Three or Four Vertices", vol. 44. Far East Journal of Mathematical Sciences. 2010, pp. 109-116.
[7] Syafrizal Sy, "On Size Multipartite Ramsey Numbers of Large Path Versus Wheel On Five Vertices", vol. 1. Discrete Mathematics, Algorithms and Applications. 2022, pp. 1-5.

