On the Ramsey Minimal Graphs for Matching and Disjoint Union of Complete Bipartite Graphs

Muhammad Rafif Fajri, Lyra Yulianti*, Des Welyyanti
Department of Mathematics and Data Science, Faculty of Mathematics and Natural Sciences, Andalas University
Kampus UNAND Limau Manis Padang-25163, Indonesia
(cc) EY

Abstract

Let G and H be two arbitrary graphs. The notation $F \rightarrow(G, H)$ means that any red-blue coloring of every edge of graph F always resulting a red subgraph containing G or a blue subgraph containing H. Denote $F^{*}:=F \backslash\{e\}$ for any edge of F. The notation $F^{*} \rightarrow(G, H)$ means that there exists a coloring of F^{*} such that F^{*} does not contain red G and blue H. The class $\mathcal{R}(G, H)$ states a set of graphs satisfying: (1) $F \rightarrow(G, H)$. (2) $\forall e \in F, F^{*}:=F \backslash\{\mathbf{e}\}, F^{*} \rightarrow(G, H)$. In this paper, some graphs in $\mathcal{R}\left(\mathbf{a K}, \mathbf{K}_{2}, \mathbf{n}\right)$ are obtained, where aK_{2} is a matching and $\mathbf{b K _ { 3 , n }}$ is a disjoint union of complete bipartite graphs $K_{3, n}$ for positive integer n.

Keywords - Ramsey minimal graph, Matching, Complete bipartite graph

I. Introduction

All graphs in this paper are considered undirected, finite and simple. Let G and H be two arbitrary graphs. If the edges of G are given arbitrary red-blue coloring, then the notation $F \rightarrow(G, H)$ means that F contains red subgraph G or blue subgraph H. If the coloring makes F does not contain red G and blue H, then we denote that $F \rightarrow(G, H)$. Graph F is a Ramsey (G, H)-minimal graph, denoted by $F \in \mathcal{R}(G, H)$, if $F \rightarrow(G, H)$ and $F \backslash\{e\} \rightarrow(G, H) \forall e \in E(F)$ [3]. Other notations and definitions are taken from Diestel [7].

Burr et al. [4] showed that for every positive integer m and an arbitrary graph H , the class $\mathcal{R}\left(\mathrm{mK}_{2}, \mathrm{H}\right)$ is finite. Some results related to the finite class are as follows. Burr et al. [5] discussed about the Ramsey minimal graphs for $\mathcal{R}\left(2 \mathrm{~K}_{2}, \mathrm{H}\right)$, where H is a matching. Baskoro and Wijaya [1] determined some graphs in $\mathcal{R}\left(2 \mathrm{~K}_{2}, \mathrm{~K}_{4}\right)$, where K_{4} is a complete graph on 4 vertices. Baskoro and Yulianti [2] focused on the graphs in $\mathcal{R}\left(2 \mathrm{~K}_{2}, \mathrm{P}_{\mathrm{n}}\right)$, where P_{n} is a path on n vertices.

In [10] Mengersen and Oeckermann considered about $\mathcal{R}\left(2 \mathrm{~K}_{2}, \mathrm{~K}_{1, \mathrm{n}}\right)$, where $\mathrm{K}_{1, \mathrm{n}}$ is a star on $\mathrm{n}+1$ vertices. Next, Muhshi and Baskoro determined the graphs in $\mathcal{R}\left(3 \mathrm{~K}_{2}, \mathrm{P}_{3}\right)$. Wijaya et al. [14] listed some graphs in $\mathcal{R}\left(3 \mathrm{~K}_{2}, \mathrm{~K}_{3}\right)$. Wijaya et al. also gave complete list of graphs in $\mathcal{R}\left(2 \mathrm{~K}_{2}, \mathrm{~K}_{4}\right)$ and $\mathcal{R}\left(2 \mathrm{~K}_{2}, \mathrm{C}_{4}\right)$ (see [19] and [20]). Moreover, Wijaya et al. [15] discussed about the characterizations of graphs in $\mathcal{R}\left(\mathrm{mK}_{2}, \mathrm{H}\right)$ for an arbitrary graph H . Wijaya et al. [13] also gave some characterizations of graphs in $\mathcal{R}\left(2 \mathrm{~K}_{2}, 2 \mathrm{H}\right)$ for an arbitrary graph H . Another results are graphs in $\mathcal{R}\left(4 \mathrm{~K}_{2}, \mathrm{P}_{3}\right), \mathcal{R}\left(\mathrm{mK}_{2}, \mathrm{P}_{3}\right)$ and $\mathcal{R}\left(4 \mathrm{~K}_{2}, \mathrm{P}_{3}\right)$ (see [16], [17], and [18]).

Nabila et al. [12] gave some graphs in $\mathcal{R}\left(\mathrm{aK}_{2}, \mathrm{bK}_{1, \mathrm{n}}\right)$ and Fajri et al. [8] gave some graph in $\mathcal{R}\left(\mathrm{aK}_{2}, \mathrm{bK}_{2, \mathrm{n}}\right)$. In this paper we study the finite class $\mathcal{R}\left(\mathrm{aK}_{2}, \mathrm{bK}_{3, \mathrm{n}}\right)$, where $\mathrm{aK} \mathrm{K}_{2}$ is a union of complete graphs K_{2} and $\mathrm{bK} \mathrm{K}_{3, \mathrm{n}}$ is a union of complete bipartite graphs $K_{3, \mathrm{n}}$ for positive integer n .

II. Main Result

The definition of $\Omega(\mathrm{t}, 3, \mathrm{n})$, for $\mathrm{t}, \mathrm{n} \in \mathbb{N}$ is given in Definition 2 .
Definition 2,1. Let t and n be two positive integers. The vertex set and edge set of $\Omega(\mathrm{t}, 3, \mathrm{n})$ are given as follows.

$$
\begin{aligned}
& \mathrm{V}(\Omega(\mathrm{t}, 3, \mathrm{n}))=\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}, \mathrm{z}_{\mathrm{k}} \mid 1 \leq \mathrm{i} \leq 3 ; 1 \leq \mathrm{j} \leq \mathrm{n}+\mathrm{t} ; 1 \leq \mathrm{k} \leq \mathrm{t}\right\} \\
& \mathrm{E}(\Omega(\mathrm{t}, 3, \mathrm{n}))=\left\{\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}}, \mathrm{y}_{j} \mathrm{z}_{\mathrm{k}} \mid 1 \leq \mathrm{i} \leq 3 ; 1 \leq \mathrm{k} \leq \mathrm{t} \text { for } 1 \leq \mathrm{j} \leq \mathrm{n} ; \mathrm{j}-\mathrm{n}+1 \leq \mathrm{k} \leq \mathrm{t} \text { for } \mathrm{n}+1 \leq \mathrm{j} \leq \mathrm{n}+\mathrm{t}\right\}
\end{aligned}
$$

Graph $\Omega(\mathrm{t}, 3, \mathrm{n})$ for $\mathrm{t}, \mathrm{n} \in \mathbb{N}$ is given in Figure 1. It can easily be seen that the graph is a non-complete bipartite graph.

Figure $1: \Omega(\mathrm{t}, 3, \mathrm{n})$
In Lemma 2.1 - Lemma 2.2, we give the properties of $\Omega(\mathrm{t}, 3, \mathrm{n})$ for $\mathrm{t}, \mathrm{n} \in \mathbb{N}$. Let $\Omega(\mathrm{t}, 3, \mathrm{n})$ be a graph in Definition 2 .
Lemma 2.2. The graph $\Omega(\mathrm{t}, 3, \mathrm{n})$ contains a perfect matching if $\mathrm{n}=3$, contains a non-perfect matching if $\mathrm{n} \neq 3$, and the maximum cardinality of the matching is $|\mathrm{M}(\Omega(\mathrm{t}, 3, \mathrm{n}))|=3+\mathrm{t}$, for $\mathrm{t}, \mathrm{n} \in \mathbb{N}$.

Proof. Partition the set $V(\Omega(t, 3, n))$ into two partitions, namely $V(U)=\left\{x_{i} \in V(\Omega(t, 3, n)) \mid 1 \leq i \leq 3\right\} \cup\left\{z_{k} \in\right.$ $\mathrm{V}(\Omega(\mathrm{t}, 3, \mathrm{n})) \mid 1 \leq \mathrm{k} \leq \mathrm{t}\}$ and $\mathrm{V}(\mathrm{W})=\left\{\mathrm{y}_{\mathrm{j}} \in \mathrm{V}(\Omega(\mathrm{t}, 3, \mathrm{n})) \mid 1 \leq \mathrm{j} \leq \mathrm{n}+\mathrm{t}\right\}$. Note that the number of vertices in the first and second partition sets are, respectively, $|\mathrm{V}(\mathrm{U})|=3+\mathrm{t}$ and $|\mathrm{V}(\mathrm{W})|=\mathrm{n}+\mathrm{t}$. The cardinality of the maximum matching of $\Omega(\mathrm{t}, 3, \mathrm{n})$ is $\mid \mathrm{M}\left(\Omega(\mathrm{t}, 3, \mathrm{n}) \mid=3+\mathrm{t}\right.$, with $\mathrm{M}\left(\Omega(\mathrm{t}, 3, \mathrm{n})=\left\{\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}+\mathrm{t}}, \mathrm{y}_{\mathrm{j}} \mathrm{z}_{\mathrm{j}} \in \mathrm{E}(\Omega(\mathrm{t}, 3, \mathrm{n})) \mid 1 \leq \mathrm{i} \leq 3 ; 1 \leq \mathrm{j} \leq \mathrm{t} ;\right\}\right.$. Next, if $\mathrm{n}=3$, then $\mathrm{M}_{\mathrm{v}}(\Omega(\mathrm{t}, 3, \mathrm{n}))=\mathrm{M}(\Omega(\mathrm{t}, 3, \mathrm{n}))$ so that the graph $\Omega(\mathrm{t}, 3, \mathrm{n})$ have a perfect matching. Furthermore, if $\mathrm{m} \neq \mathrm{n}$, then there is a vertex set $\mathrm{N}=\left\{\mathrm{y}_{\mathrm{i}} \in \mathrm{V}(\Omega(\mathrm{t}, \mathrm{m}, \mathrm{n})) \mid 3+\mathrm{t}+1 \leq \mathrm{i} \leq \mathrm{n}+\mathrm{t}\right\}$ such that $\mathrm{N} \nsubseteq \mathrm{M}_{\mathrm{V}}(\Omega(\mathrm{t}, 3, \mathrm{n}))$ such that the graph $\Omega(\mathrm{t}, 3, \mathrm{n})$ is not a perfect matching.

Lemma 2.3. Let $\Omega(\mathrm{t}, 3, \mathrm{n})$ be a graph in Definition 2. Let $\mathrm{F} \subseteq \Omega(\mathrm{t}, 3, \mathrm{n})$ with $|\mathrm{M}(\mathrm{F})|=\mathrm{k}$. Let $\mathrm{H}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{K}_{1, \mathrm{~s}(\mathrm{i})} \subseteq \Omega(\mathrm{t}, 3, \mathrm{n})$, where $s(i)$ is the maximum degree that can be formed from the $i^{\text {th }}$ star graph. Then, $F \subseteq H$.

Proof. Because $\Omega(\mathrm{t}, 3, \mathrm{n})$ is bipartite, and $\mathrm{F}, \mathrm{H} \subseteq \Omega(\mathrm{t}, 3, \mathrm{n})$, then F and H are also bipartite. Therefore, there is no odd cycle and no complete graph K_{n} for $\mathrm{n} \geq 3$ in graph F and H . By Lemma 2.2, since $|\mathrm{M}(\Omega(\mathrm{t}, 3, \mathrm{n}))|=3+\mathrm{t}$ and $\mathrm{F} \subseteq \Omega(\mathrm{t}, 3, \mathrm{n})$, then $|\mathrm{M}(\mathrm{F})|=\mathrm{k}$, for $1 \leq \mathrm{k} \leq 3+\mathrm{t}$. Next, we construct $\mathrm{H}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{K}_{1, \mathrm{~s}(\mathrm{i})} \subseteq \Omega(\mathrm{t}, 3, \mathrm{n})$, with $\mathrm{s}(\mathrm{i})$ is the maximum degree that can be formed from the $\mathrm{i}^{\text {th }}$ star graph. Since every vertex on graph H has a maximum degree respect to $\Omega(\mathrm{t}, 3, \mathrm{n})$, so the number of
vertices and edges of graph H is also maximum. Since $|M(H)|=|M(F)|=k$, the graphs $H, F \subseteq \Omega(t, 3, n)$, and H are graphs with a maximum number of vertices and edges, then $F \subseteq H$.

In Theorem 2.4, we show that for some positive integers t and $\mathrm{n}, \Omega(\mathrm{t}, 3, \mathrm{n})$ is a Ramsey-minimal graph for $((\mathrm{t}+$ 1) $\left.K_{2}, K_{3, n}\right)$.

Theorem 2.4. Let $\Omega(\mathrm{t}, 3, \mathrm{n})$ be a graph in Definition 2. Let t and n be two positive integers. Then, $\Omega(\mathrm{t}, 3, \mathrm{n}) \in \mathcal{R}((\mathrm{t}+$ 1) $\left.K_{2}, K_{3, n}\right)$.

Proof. First, we show that $\Omega(\mathrm{t}, 3, \mathrm{n}) \rightarrow\left((\mathrm{t}+1) \mathrm{K}_{2}, \mathrm{~K}_{3, \mathrm{n}}\right)$. Consider any red-blue coloring of the edges of the graph $\Omega(t, 3, n)$. Suppose that there is no red $(t+1) K_{2}$ in the coloring. Therefore, the possible maximum red subgraph is $t K_{2}$. The graphs that may contain red $t K_{2}$ are complete graphs $K_{2 t+1}$, odd cycle $C_{2 t+1}$, path $P_{2 t+1}$, and any other graph that has t as the cardinality of their maximum matching. Since $\Omega(\mathrm{t}, 3, \mathrm{n})$ is a bipartite graph, we know that there is no odd cycle in the graph. Therefore, the possibility of a red graph in the form of $\mathrm{C}_{2 t+1}$, or a combination of several odd-cycle graphs with a maximum cardinality of matching t, can be ignored. Next, since $C_{3} \subseteq \Omega(t, 3, n)$ and $C_{3} \subseteq K_{t}$ for $t \geq 3$, we know that there is no complete graph K_{t} in the graph $\Omega(\mathrm{t}, \mathrm{m}, \mathrm{n})$. Therefore, the possibility of a red graph in the form of $\mathrm{K}_{2 \mathrm{t}+1}$, or a combination of several complete graphs K_{s}, for $s \geq 3$ with a maximum cardinality of matching t, can also be ignored.

Denote \mathbb{F} as the set containing all graphs with the cardinality of the maximum matching of t and $F \subseteq \Omega(t, 3, n), \forall F \in \mathbb{F}$. It can be seen that $\left|M\left(\mathrm{tK}_{2}\right)\right|=|M(F)|=t, \forall F \in \mathbb{F}$. From Lemma 2.3, we know that $F \subseteq U_{i=1}^{t} K_{1, s(i)}=H \subseteq \Omega(t, 3, n)$, where $\mathrm{s}(\mathrm{i})$ is the maximum degree that can be formed from the $\mathrm{i}^{\text {th }} \operatorname{star}$ graph in $\Omega(\mathrm{t}, 3, \mathrm{n})$. Therefore, the combination of t star graphs has represented all cases of the pissibilities of the red tK_{2} in $\Omega(\mathrm{t}, 3, \mathrm{n})$.

We construct the red-blue coloring of $\Omega(\mathrm{t}, 3, \mathrm{n})$ as follows.

1. Every edge that incident with r vertices on $\mathrm{X}=\left\{\mathrm{x}_{\mathrm{i}} \in \mathrm{V}(\Omega(\mathrm{t}, 3, \mathrm{n})) \mid 1 \leq \mathrm{i} \leq 3\right\}$, with $0 \leq \mathrm{r} \leq \mathrm{t}$ are colored red. Denote this set of red vertices as R.
2. Every edge that incident with s vertices on $\mathrm{Y}=\left\{\mathrm{y}_{\mathrm{j}} \in \mathrm{V}(\Omega(\mathrm{t}, 3, \mathrm{n})) \mid 1 \leq \mathrm{j} \leq \mathrm{n}+\mathrm{t}\right\}$, with $0 \leq \mathrm{s} \leq \mathrm{t}-\mathrm{r}$ are colored red. Denote this set of red vertices as S .
3. Every edge that incident with $\mathrm{t}-\mathrm{r}-\mathrm{s}$ vertices on $\mathrm{Z}=\left\{\mathrm{z}_{\mathrm{k}} \in \mathrm{V}(\Omega(\mathrm{t}, 3, \mathrm{n})) \mid 1 \leq \mathrm{k} \leq \mathrm{t}\right\}$ are colored red. Denote this set of red vertices as P.
4. The remaining edge are colored blue. Denote this blue subgraph as B.

Consider the vertex set $V(B)$. Denote the vertex sets $B_{X}=(V(B) \cap X)-R, B_{Y}=(V(B) \cap Y)-S$, and $B_{Z}=(V(B) \cap Z)-$ P. Take all the vertices on B_{X}, n the first point on B_{Y}, and r the last vertices on B_{Z}. Denote the set of all the vertices that have been taken as \mathbb{B}_{V}. Then, add some edges between every vertex in \mathbb{B}_{V}, and denote \mathbb{B}_{E} as the set containing these new edges, with the condition $\mathbb{B}_{E} \subset E(B)$. Note that the vertex set \mathbb{B}_{V} and the edge set \mathbb{B}_{E} build up the graph $K_{3, n}$. Then, for every possibility of red $t K_{2}$, we always have a blue $K_{3, n}$. Therefore, $\Omega(t, n, m) \rightarrow\left((t+1) K_{2}, K_{3, n}\right)$.

Next, we show that $\forall \mathrm{e} \in \mathrm{E}(\Omega(\mathrm{t}, 3, \mathrm{n})), \quad \Omega(\mathrm{t}, 3, \mathrm{n})^{*}:=\Omega(\mathrm{t}, 3, \mathrm{n}) \backslash\{\mathrm{e}\} \rightarrow\left((\mathrm{t}+1) \mathrm{K}_{2}, \mathrm{~K}_{3, \mathrm{n}}\right)$. We list all the possibilities of the red-blue coloring of the edges of $\Omega(\mathrm{t}, 3, \mathrm{n})^{*}$ such that it does not contain $(\mathrm{p}+1) \mathrm{K}_{2}$ red and $\mathrm{K}_{3, \mathrm{n}}$ blue in Table 1 as follows.

Table 1: The Possibilities of the red-blue coloring of the edges of $\Omega(\mathrm{t}, 3, \mathrm{n})^{*}$ such that it does not contain red $(p+1) \mathrm{K}_{2}$ and blue $\mathrm{K}_{3, n}$

$\begin{gathered} \text { Cas } \\ \text { e } \end{gathered}$	Edge deletion	For	Condition
1	$\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}}$	$1 \leq \mathrm{i} \leq 3 ; 1 \leq \mathrm{j} \leq \mathrm{n}$	$\mathrm{t}<3$; $\mathrm{i}<\mathrm{t}+2$
	Red Edge Incident with	x_{k}	$1 \leq \mathrm{k} \leq \mathrm{t}+1 ; \mathrm{k} \neq \mathrm{i}$
2	$\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}}$	$1 \leq \mathrm{i} \leq 3 ; 1 \leq \mathrm{j} \leq \mathrm{n}$	$\mathrm{t}<3 ; \mathrm{i} \geq \mathrm{t}+2$.
	Red Edge Incident with	x_{k}	$1 \leq \mathrm{k} \leq \mathrm{p}$
3	$\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}}$	$1 \leq \mathrm{i} \leq 3 ; \mathrm{n}+1 \leq \mathrm{j} \leq \mathrm{n}+\mathrm{t}-1$	$\mathrm{t}<3 ; \mathrm{i}<\mathrm{t}+\mathrm{n}+2-\mathrm{j}$.
	Red Edge Incident with	x_{k}	$1 \leq \mathrm{k} \leq \mathrm{t}+\mathrm{n}+1-\mathrm{j} ; \mathrm{k} \neq \mathrm{i}$
		y_{r}	$1 \leq \mathrm{r} \leq \mathrm{j}-\mathrm{n}$
4	$\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}}$	$1 \leq \mathrm{i} \leq 3 ; \mathrm{n}+1 \leq \mathrm{j} \leq \mathrm{n}+\mathrm{t}-1$	$\mathrm{t}<3 ; \mathrm{i} \geq \mathrm{t}+\mathrm{n}+2-\mathrm{j}$.
	Red Edge Incident with	x_{k}	$1 \leq \mathrm{k} \leq \mathrm{t}+\mathrm{n}-\mathrm{j}$
		y_{r}	$1 \leq \mathrm{r} \leq \mathrm{j}-\mathrm{n}$
5	$\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{n}+\mathrm{t}}$	$1 \leq \mathrm{i} \leq 3$	$\mathrm{t}<3$.
	Red Edge Incident with	y_{r}	$1 \leq \mathrm{r} \leq \mathrm{t}$
6	$\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}}$	$1 \leq \mathrm{i} \leq 3 ; 1 \leq \mathrm{j} \leq \mathrm{n}$	$\mathrm{t} \geq 3$.
	Red Edge Incident with	x_{k}	$1 \leq \mathrm{k} \leq 3 ; \mathrm{k} \neq \mathrm{i}$
		$\mathrm{z}_{\text {s }}$	$\mathrm{t}-3+1 \leq \mathrm{s} \leq \mathrm{t}$
7	$\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}}$	$1 \leq \mathrm{i} \leq 3 ; \mathrm{n}+1 \leq \mathrm{j} \leq \mathrm{n}+\mathrm{t}-3$	$\mathrm{t} \geq 3$.
	Red Edge Incident with	x_{k}	$1 \leq \mathrm{k} \leq 3 ; \mathrm{k} \neq \mathrm{i}$
		y_{r}	$1 \leq \mathrm{r} \leq \mathrm{j}-\mathrm{n}$
		$\mathrm{z}_{\text {S }}$	$\mathrm{j}-\mathrm{n}+3 \leq \mathrm{s} \leq \mathrm{t}$
8	$\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}}$	$1 \leq \mathrm{i} \leq 3 ; \mathrm{n}+\mathrm{t}-2 \leq \mathrm{j} \leq \mathrm{n}+\mathrm{t}-1$	$\mathrm{t} \geq 3 ; \mathrm{i}<\mathrm{j}-\mathrm{n}-\mathrm{t}+3$.
	Red Edge Incident with	x_{k}	$\mathrm{j}-\mathrm{n}-\mathrm{t}+4 \leq \mathrm{k} \leq 3$
		y_{r}	$1 \leq \mathrm{r} \leq \mathrm{j}-\mathrm{n}$
9	$\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}}$	$1 \leq \mathrm{i} \leq 3 ; \mathrm{n}+\mathrm{t}-2 \leq \mathrm{j} \leq \mathrm{n}+\mathrm{t}-1$	$\mathrm{t} \geq 3 ; \mathrm{i} \geq \mathrm{j}-\mathrm{n}-\mathrm{t}+3$.
	Red Edge Incident with	x_{k}	$\mathrm{j}-\mathrm{n}-\mathrm{t}+3 \leq \mathrm{k} \leq 3 ; \mathrm{k} \neq \mathrm{i}$
		y_{r}	$1 \leq \mathrm{r} \leq \mathrm{j}-\mathrm{n}$
10	$\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{n}+\mathrm{t}}$	$1 \leq \mathrm{i} \leq 3$	$\mathrm{t} \geq 3$
	Red Edge Incident with	x_{k}	$1 \leq \mathrm{k} \leq \mathrm{t}$
11	$\mathrm{y}_{\mathrm{i}} \mathrm{z}_{1}$	$1 \leq \mathrm{i} \leq \mathrm{n}$	
	Red Edge Incident with	x_{k}	$\mathrm{k}=1$
		$\mathrm{z}_{\text {S }}$	$2 \leq \mathrm{s} \leq \mathrm{t}$
12	$\mathrm{y}_{\mathrm{i}} \mathrm{z}_{\mathrm{j}}$	$1 \leq \mathrm{i} \leq \mathrm{n}+\mathrm{j}-1 ; 2 \leq \mathrm{j} \leq \mathrm{t}-1$	$\mathrm{i}<\mathrm{j}$
	Red Edge Incident with	x_{k}	$\mathrm{k}=1$
		y_{r}	$1 \leq \mathrm{r} \leq \mathrm{j} ; \mathrm{r} \neq \mathrm{i}$
		$\mathrm{z}_{\text {S }}$	$\mathrm{j}+1 \leq \mathrm{s} \leq \mathrm{t}$
13	$\mathrm{y}_{\mathrm{i}} \mathrm{z}_{\mathrm{j}}$	$1 \leq \mathrm{i} \leq \mathrm{n}+\mathrm{j}-1 ; 2 \leq \mathrm{j} \leq \mathrm{t}-1$	$\mathrm{i} \geq \mathrm{j}$
	Red Edge Incident with	x_{k}	$\mathrm{k}=1$
		y_{r}	$1 \leq \mathrm{r} \leq \mathrm{j}-1$

		z_{s}	$\mathrm{j}+1 \leq \mathrm{r} \leq \mathrm{t}-1$
14	$\mathrm{y}_{\mathrm{i}} \mathrm{z}_{\mathrm{t}}$	$1 \leq \mathrm{i} \leq \mathrm{n}+\mathrm{t}-1$	$\mathrm{i} \geq \mathrm{j}$
	Red Edge Incident		
	with		

For example, consider Case 1. This case holds for $t<3$. One edge that is deleted in the graph $\Omega(t, 3, n)^{*}$ is one of $x_{i} y_{j}$, for $1 \leq \mathrm{i} \leq 3$ and $1 \leq \mathrm{j} \leq \mathrm{n}$. If $\mathrm{i}<\mathrm{t}+2$, then color all edges that incident to x_{k}, for $1 \leq \mathrm{k} \leq \mathrm{t}+1$ and $\mathrm{k} \neq \mathrm{i}$, with red color. The remaining edges are colored blue. Note that there is neither red nor blue $(t+1) K_{2}$ in the red-blue $\Omega(t, 3, n)^{*}$ coloring. Other cases are explained similarly. Based on the 14 cases above, we have that $\Omega(\mathrm{t}, 3, \mathrm{n})^{*} \rightarrow\left((\mathrm{t}+1) \mathrm{K}_{2}, \mathrm{~K}_{3, \mathrm{n}}\right)$.
(Q.E.D)

In Definition 2.5, we define graph $(\mathrm{a}+\mathrm{b}-1) \mathrm{K}_{3, \mathrm{n}}$ for $\mathrm{n} \in \mathbb{N}$.
Definition 2.5. Let a, b, and n be three positive integers. Let $K_{3, n}^{(s)}$ be the $s^{\text {th }}$ complete bipartite graph, for $1 \leq s \leq a+b-1$.
Denote $(a+b-1) K_{3, n}=U_{s=1}^{a+b-1} K_{3, n}^{(s)}$. The vertex set and edge set of $(a+b-1) K_{3, n}$ are given as follows.

$$
\begin{aligned}
& \mathrm{V}\left(\mathrm{~K}_{3, \mathrm{n}}^{(\mathrm{t})}\right)=\left\{\mathrm{x}_{\mathrm{t}, \mathrm{i}}, \mathrm{y}_{\mathrm{t}, \mathrm{j}} \mid 1 \leq \mathrm{i} \leq 3 ; 1 \leq \mathrm{j} \leq \mathrm{n} ; 1 \leq \mathrm{t} \leq \mathrm{a}+\mathrm{b}-1\right\}, \\
& \mathrm{E}\left(\mathrm{~K}_{3, \mathrm{n}}^{(\mathrm{t})}\right)=\left\{\mathrm{x}_{\mathrm{t}, \mathrm{i}} \mathrm{y}_{\mathrm{t}, \mathrm{j}} \mid 1 \leq \mathrm{i} \leq 3 ; 1 \leq \mathrm{j} \leq \mathrm{n} ; 1 \leq \mathrm{t} \leq \mathrm{a}+\mathrm{b}-1\right\}
\end{aligned}
$$

Graph $(a+b-1) K_{3, n}$ is given in Figure 2.

Figure 2: $(a+b-1) K_{3, n}$
In Theorem 2.6, we show that for some positive integers a, b, and n, the graph $(a+b-1) K_{3, n}$ is a Ramsey-minimal graph for $\left(\mathrm{aK}_{2}, \mathrm{bK}_{3, \mathrm{n}}\right)$.

Theorem 2.6. Let a, b, and n be three positive integers. Let $(a+b-1) K_{3, n}$ be a graph in Definition 0 . Then, $(a+b-$ 1) $\mathrm{K}_{3, \mathrm{n}} \in \mathcal{R}\left(\mathrm{aK}_{2}, \mathrm{bK}_{3, \mathrm{n}}\right)$.

Proof. First, we show that $(a+b-1) K_{m, n} \rightarrow\left(a K_{2}, b K_{3, n}\right)$. Consider any red-blue coloring of the edges of the graph $(a+b-1) K_{3, n}$. Suppose that there is no red $a K_{2}$ in the coloring. Therefore, the possible maximum red subgraph is ($a-$ 1) K_{2}. Without loss of generality, color any edge of the graph $K_{3, n}^{(i)}$, for $1 \leq i \leq a-1$ with one red K_{2} each, and the remaining edge are colored blue. Note that the subgraph $K_{3, n}^{(i)}$ does not contain $K_{3, n}$ blue and b subgraph $K_{3, n}^{(j)}$ contain $b K_{3, n}$ blue, for $a+1 \leq j \leq a+b-1$. Therefore, $(a+b-1) K_{3, n} \rightarrow\left(a K_{2}, b K_{3, n}\right)$.

Next, we show that $\forall e \in(a+b-1) K_{3, n},(a+b-1) K_{3, n}^{*}:=(a+b-1) K_{3, n} \backslash\{e\} \rightarrow\left(a K_{2}, b K_{3, n}\right)$. Without loss of generality, let the deleted edge is in the subgraph $K_{3, n}^{(1)}$. Then, color any edge of the subgraph $K_{3, n}^{(i)}$, for $2 \leq i \leq a$ with one red K_{2}, and the remaining edge are colored blue. Note that the subgraph $K_{3, n}^{(i)}$ does not contain $K_{3, n}$ blue and b subgraph $K_{3, n}^{(j)}$ only contains $(b-1) K_{3, n}$ blue, for $a+1 \leq j \leq a+b-1$. Therefore, $(a+b-1) K_{3, n} \rightarrow\left(a K_{2}, b K_{3, n}\right)$.
(Q.E.D)

III. CONCLUSIONS

In this paper, we have determined that $\Omega(\mathrm{t}, 3, \mathrm{n}) \in \mathcal{R}\left((\mathrm{t}+1) \mathrm{K}_{2}, \mathrm{~K}_{3, \mathrm{n}}\right)$ and $(\mathrm{a}+\mathrm{b}-1) \mathrm{K}_{3, \mathrm{n}} \in \mathcal{R}\left(\mathrm{aK}_{2}, \mathrm{bK} \mathrm{K}_{3, \mathrm{n}}\right)$.

References

[1] Baskoro, E.T., Wijaya, K. 2015. On Ramsey $\left(2 \mathrm{~K}_{2}, \mathrm{~K}_{4}\right)$-minimal graphs. In: Mathematics in the 21st Century, Springer Proceedings in Mathematics \& Statistics Vol. 98: 11-17
[2] Baskoro, E.T., Yulianti, L. 2011. On Ramsey minimal graphs for $2 \mathrm{~K}_{2}$ versus P_{n}. Adv. Appl. Discrete Math. 8(2): 83 90
[3] Burr, S. A., Erdős, P., Lovasz, L. 1976. On Graph of Ramsey Type, Ars Combinatoria: 167 - 190.
[4] Burr, S.A., Erdös, P., Faudree, R.J., Schelp, R.H. 1978. A class of Ramsey-finite graphs. In: Proceeding of the Ninth Southeastern Conference on Combinatorics, Graph Theory and Computing: 171-180
[5] Burr, S.A., Erdös, P., Faudree, R.J., Schelp, R.H.: 1981. Ramsey minimal graphs for matchings. In: The Theory and Applications of Graphs (Kalamazoo, Mich.): 159-168
[6] Burr, S.A., Erdös, P., Faudree, R.J., Rousseau, C.C., Schelp, R.H. 1982. Ramsey minimal graphs for forests. Discrete Math. 38(1): 23 - 32
[7] Diestel, R., 2017, Graph Theory, $5^{\text {th }}$ ed., Springer-Verlag New York Inc., New York
[8] Fajri, M. R., Yulianti, L., Welyyanti, D., 2022. Ramsey Minimal Graph for Union of Complete Graph and Complete Bipartite Graph, submitted to Electronic Journal of Graph Theory and Applications
[9] Fitriani D., Salman A.N.M. 2016. Rainbow connection number of amalgamation of some graph. AKCE Internasional Journal of Graph and Combinatorics 13: 90-99
[10] Mengersen, I., Oeckermann, J. 1999. Matching-star Ramsey sets. Discrete Appl. Math. 95: 417-424
[11] Muhshi, H., Baskoro, E.T. 2012. On Ramsey ($3 \mathrm{~K}_{2}, \mathrm{P}_{3}$)-minimal graphs. AIP Conference Proceeding 1450: 110 - 117
[12] Nabila, M., Yulianti, L., Syafwan, M., 2019. Graf Ramsey Minimal Untuk Pasangan Gabungan Graf Lengkap K ${ }_{2}$ dan Gabungan Graf Bintang $\mathrm{K}_{1, \mathrm{n}}$ (in Bahasa), Jurnal Matematika UNAND. 8(1): 195 - 200
[13] Wijaya, K. , Baskoro, E. T. 2016. On Ramsey ($2 \mathrm{~K}_{2}, 2 \mathrm{H}$)-Minimal Graphs, Springer India, J. Math, 186: 219 - 223
[14] Wijaya, K., Baskoro, E.T., Assiyatun, H., Suprijanto, D. 2016. On Ramsey ($3 \mathrm{~K}_{2}, \mathrm{~K}_{3}$)-minimal graphs. In: AIP Conference Proceedings Vol. 1707, pp. 020025. doi:10.1063/1.4940826
[15] Wijaya, K., Baskoro, E.T., Assiyatun, H., Suprijanto, D. 2016. On Ramsey (mK ${ }_{2}$, H)-Minimal Graphs, Graphs and Combinatorics Vol. 23: 233-243
[16] Wijaya, K., Baskoro, E.T., Assiyatun, H., Suprijanto, D. 2018, On Ramsey ($4 \mathrm{~K}_{2}, \mathrm{P}_{3}$)-minimal graphs, AKCE International Journal of Graphs and Combinatorics 15(2): 174-186
[17] Wijaya, K., Baskoro, E.T., Assiyatun, H., Suprijanto, D. 2015. On unicyclic Ramsey ($\mathrm{mK}_{2}, \mathrm{P}_{3}$)-minimal graphs. Proc. Comput. Sci. 74: 10 - 14
[18] Wijaya, K., Baskoro, E.T., Assiyatun, H., Suprijanto, D., 2020, Subdivision of graphs in R($\mathrm{mK}_{2}, \mathrm{P}_{4}$), Heliyon 6(6): e03843
[19] Wijaya, K., Baskoro, E.T., Assiyatun, H., Suprijanto, D. 2015. The complete list of Ramsey $\left(2 \mathrm{~K}_{2}, \mathrm{~K}_{4}\right)$-minimal graphs. Electron. J. Graph Theory Appl. 3(2) : 216-227
[20] Wijaya, K., Yulianti, L., Baskoro, E.T., Assiyatun, H., Suprijanto, D. 2015. All Ramsey ($2 \mathrm{~K}_{2}, \mathrm{C}_{4}$)-minimal graphs. J. Algorithms Comput. 46: 9-25

