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Abstract — Let G and H be two arbitrary graphs. The notation F — (G, H) means that any red-blue coloring of every edge of graph F
always resulting a red subgraph containing G or a blue subgraph containing H. Denote F*: = F\{e} for any edge of F. The notation
F* + (G, H) means that there exists a coloring of F* such that F* does not contain red G and blue H. The class R(G, H) states a set of
graphs satisfying: (1) F - (G, H). 2) Ve € F, F*: = F\{e}, F* » (G, H). In this paper, some graphs in R(aKj, bK3,) are obtained,
where aK; is a matching and bKj3,, is a disjoint union of complete bipartite graphs K3 ,, for positive integer n.
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I. INTRODUCTION

All graphs in this paper are considered undirected, finite and simple. Let G and H be two arbitrary graphs. If the edges of G
are given arbitrary red-blue coloring, then the notation F — (G, H) means that F contains red subgraph G or blue subgraph H. If
the coloring makes F does not contain red G and blue H, then we denote that F » (G, H). Graph F is a Ramsey (G, H)-minimal
graph, denoted by F € R(G, H), if F = (G, H) and F\{e} » (G, H) Ve € E(F) [3]. Other notations and definitions are taken from
Diestel [7].

Burr et al. [4] showed that for every positive integer m and an arbitrary graph H, the class R(mKj, H) is finite. Some results
related to the finite class are as follows. Burr et al. [5] discussed about the Ramsey minimal graphs for R(2K,, H), where H is a
matching. Baskoro and Wijaya [1] determined some graphs in R(2K,, K,), where K, is a complete graph on 4 vertices. Baskoro
and Yulianti [2] focused on the graphs in R(2K,, P,,), where P, is a path on n vertices.

In [10] Mengersen and Oeckermann considered about R(2K,, K, ), where K ;, is a star on n + 1 vertices. Next, Muhshi
and Baskoro determined the graphs in R(3K,, P;). Wijaya et al. [14] listed some graphs in R(3K,, K3). Wijaya et al. also gave
complete list of graphs in R(2K,,K,) and R(2K,, C,) (see [19] and [20]). Moreover, Wijaya et al. [15] discussed about the
characterizations of graphs in R(mKj,, H) for an arbitrary graph H. Wijaya et al. [13] also gave some characterizations of graphs
in R(2K,, 2H) for an arbitrary graph H. Another results are graphs in R(4Kj,, P;), R(mK,, P;) and R(4K,, P;) (see [16], [17],
and [18]).

Nabila et al. [12] gave some graphs in R(aK,, bK; ,) and Fajri et al. [8] gave some graph in R(aKj, bK, ). In this paper we
study the finite class R(aK,, bK3 ), where aK, is a union of complete graphs K, and bKj,, is a union of complete bipartite
graphs K3, for positive integer n.
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II. MAIN RESULT
The definition of Q(t, 3,n), for t,n € N is given in Definition 2.
Definition 2,1. Let t and n be two positive integers. The vertex set and edge set of Q(t, 3, n) are given as follows.
VAt 3,n) ={x,y,z/1 <i<3;1<j<n+t1<k<t}
E(Q3,n) = {xyy;,yjz/1 <i<3;1<k<t for 1<j<n;j—n+1<k<t for n+1<j<n+t}.

Graph Q(t,3,n) for t,n € N is given in Figure 1. It can easily be seen that the graph is a non-complete bipartite graph.

Yot

Figure 1: Q(t,3,n)
In Lemma 2.1 - Lemma 2.2, we give the properties of ((t,3,n) for t,n € N. Let Q(t, 3,n) be a graph in Definition 2.

Lemma 2.2. The graph Q(t, 3,n) contains a perfect matching if n = 3, contains a non-perfect matching if n # 3, and the
maximum cardinality of the matching is [M(Q(t, 3,n))| =3 +t, fort,n € N.

Proof. Partition the set V(Q(t 3,n)) into two partitions, namely V(U) ={x; € V(Q(t,3,n))[1 <i<3}U{z €
VQ(t 3,n)|1 <k <t} and V(W) = {y; € V(Q(t,3,n))|1 < j < n + t}. Note that the number of vertices in the first and
second partition sets are, respectively, |V(U)| =3 +t and |[V(W)| =n+t . The cardinality of the maximum matching of
Q(t,3,n) is IM(Q(t, 3,n)| = 3 + t, with M(Q(t, 3,n) = {Xjyi+0, ¥jZ € E(Q(£,3,n)|1 <i<3;1 <)<t} Next, if n = 3, then
M, (Q(t, 3,n)) = M(Q(t, 3,n)) so that the graph Q(t, 3, n) have a perfect matching. Furthermore, if m # n, then there is a vertex
set N ={y; € V(Q(t, m,n))|3 +t+ 1 <i<n+t}such that N € My(Q(t, 3,n)) such that the graph Q(t,3,n) is not a perfect
matching.

(Q.E.D)
Lemma 2.3. Let Q(t,3,n) be a graph in Definition 2. Let F € Q(t, 3,n) with [M(F)| = k. Let H = UK, Ky sy € Q(t3,n),
where s(i) is the maximum degree that can be formed from the i*" star graph. Then, F € H.

Proof. Because (t, 3,n) is bipartite, and F,H € Q(t, 3,n), then F and H are also bipartite. Therefore, there is no odd cycle
and no complete graph K, for n = 3 in graph F and H. By Lemma 2.2, since |[M(Q(t, 3,n))| = 3 +t and F € Q(t, 3,n), then
IM(F)| =k, for 1 <k < 3 +t. Next, we construct H = UK ; Ky sy € Q(t 3,n), with s(i) is the maximum degree that can be

formed from the i™ star graph. Since every vertex on graph H has a maximum degree respect to (t, 3,n), so the number of
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vertices and edges of graph H is also maximum. Since |[M(H)| = [M(F)| = Kk, the graphs H,F < Q(t,3,n), and H are graphs
with a maximum number of vertices and edges, then F € H.

(QEE.D)

In Theorem 2.4, we show that for some positive integers t and n, Q(t,3,n) is a Ramsey-minimal graph for ((t+
DKz, K3 n).

Theorem 2.4. Let Q(t, 3,n) be a graph in Definition 2. Let t and n be two positive integers. Then, Q(t,3,n) € R((t +
1)K2' K3,n)-

Proof. First, we show that Q(t,3,n) - ((t + 1)K,,K3,). Consider any red-blue coloring of the edges of the graph
Q(t, 3,n). Suppose that there is no red (t + 1)K, in the coloring. Therefore, the possible maximum red subgraph is tK,. The
graphs that may contain red tK, are complete graphs K,.,;, odd cycle C,.44, path P4, and any other graph that has t as the
cardinality of their maximum matching. Since Q(t, 3, n) is a bipartite graph, we know that there is no odd cycle in the graph.
Therefore, the possibility of a red graph in the form of C,.,4, or a combination of several odd-cycle graphs with a maximum
cardinality of matching t, can be ignored. Next, since C3 € Q(t,3,n) and C; S K; for t > 3, we know that there is no
complete graph K, in the graph Q(t, m, n). Therefore, the possibility of a red graph in the form of K,;,,, or a combination of
several complete graphs K, for s > 3 with a maximum cardinality of matching t, can also be ignored.

Denote FF as the set containing all graphs with the cardinality of the maximum matching of t and F € Q(t, 3,n), VF € F. It
can be seen that |[M(tK,)| = [M(F)| = t,VF € F. From Lemma 2.3, we know that F € U!_,; Kis@ = H < Q(t, 3,n), where
s(i) is the maximum degree that can be formed from the i™® star graph in Q(t, 3, n). Therefore, the combination of t star graphs
has represented all cases of the pissibilities of the red tK, in Q(t, 3, n).

We construct the red-blue coloring of (U(t, 3,n) as follows.

1. Every edge that incident with r vertices on X = {x; € V(QU(t,3,n))|1 <i < 3}, with 0 <r <t are colored red.
Denote this set of red vertices as R.

2. Every edge that incident with s vertices on Y = {y; € V(Q(t,3,n))|1 < j < n+t}, with 0 <s < t —r are colored
red. Denote this set of red vertices as S.

3. Every edge that incident with t — r — s vertices on Z = {z, € V(Q(t,3,n))|1 < k < t} are colored red. Denote this
set of red vertices as P.

4. The remaining edge are colored blue. Denote this blue subgraph as B.

Consider the vertex set V(B). Denote the vertex sets By = (V(B)NX) —R,By = (V(B)NnY) —S,and B; = (V(B) N Z) —
P. Take all the vertices on By, n the first point on By, and r the last vertices on By. Denote the set of all the vertices that have
been taken as By. Then, add some edges between every vertex in By, and denote By as the set containing these new edges,
with the condition Bg  E(B). Note that the vertex set By and the edge set Bg build up the graph K3 ,. Then, for every
possibility of red tK,, we always have a blue K3 ,,. Therefore, Q(t,n,m) — ((t + 1)K, K3 ).

Next, we show that Ve € E(Q(t,3,n)), Q(t,3,n)*:= Q(t,3,n) \{e} » ((t + 1)K,,K3,,). We list all the possibilities of
the red-blue coloring of the edges of 1(t, 3, n)* such that it does not contain (p + 1)K, red and K3 ,, blue in Table 1 as follows.
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Table 1: The Possibilities of the red-blue coloring of the edges of Q(t, 3,n)*

such that it does not contain red (p + 1)K, and blue K3 ,,

Cas Edge deletion For Condition
e
1 XiYj 1<i<3;1<j<n t<3i<t+2
Red Edge Incident XK 1<k<t+Lk=#i
with
2 XiYj 1<i<3;1<j<n t<3;i=t+ 2.
Red Edge Incident Xy 1<k<p
with
3 XiYj 1<i<3n+1<j<n+t-—-1 t<3;i<t+n+2-—j.
Red Edge Incident Xx 1<k<t+n+1-jk=+#i
with Ve 1<r<j—-n
4 XiYj 1<i<3;n+1<j<n+t-1 t<3;i=zt+n+2-—j.
Red Edge Incident Xk 1<k<t+n-—j
with Vr 1<r<j—n
5 XiVntt 1<i<3 t<3.
Red Edge Incident Vr 1<r<t
with
6 XiYj 1<i<3;1<j<n t=3.
Red Edge Incident X 1<k<3;k=+#i
with Zg t—3+1<s<t
7 XiYj 1<i<3;n+1<j<n+t-3 t=3.
Red Edge Incident Xk 1<k<3;k#i
with Vr 1<r<j—-n
Zg j—n+3<s<t
8 X;Yj 1<i<3n+t—-2<j<n+t-1 t=3;i<j—n—t+3.
Red Edge Incident Xk j—n—t+4<k<3
with Vr 1<r<j—-n
9 XiYj 1<is3n+t—-2<j<n+t—-1 t=3;i=zj—n—t+3.
Red Edge Incident Xi j—n—t+3<k<3;k=#i
with Ve 1<r<j—-n
10 XiVn+t 1<i<3 t=>3
Red Edge Incident Xy 1<k<t
with
11 ViZ1 1<i<n
Red Edge Incident Xy k=1
with Zg 2<s<t
12 ViZj 1<i<n+j—-1;2<5j<t—-1 i<j
Red Edge Incident Xk k=1
with Vr 1<r<jr#i
Zs jt1<s<t
13 YiZ; 1<i<n+j—-1;2<j<t—-1 =]
Red Edge Incident Xk k=1
with Vr 1<r<j-1
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Zg jt1<sr<t-1
14 ViZt 1<is<n+t-1 i=]
Red Edge Incident Xk k=1

with Vr I1<r<tr#i

For example, consider Case 1. This case holds for t < 3. One edge that is deleted in the graph Q(t, 3,n)" is one of x;y;, for
1<i<3and1<j<n. Ifi<t+ 2, then color all edges that incident to xy, for 1 <k <t+ 1 and k # i , with red color.
The remaining edges are colored blue. Note that there is neither red nor blue (t + 1)K, in the red-blue Q(t, 3,n)* coloring.
Other cases are explained similarly. Based on the 14 cases above, we have that Q(t, 3,n)" » ((t + 1)K, K3 ).

(Q.E.D)
In Definition 2.5, we define graph (a + b — 1)K, forn € N.

Definition 2.5. Let a, b, and n be three positive integers. Let Kgsr)l be the s complete bipartite graph, for 1 <s<a+b— 1.
Denote (a+b — 1)K;3 =y3ath-1 Kgsr)l The vertex set and edge set of (a + b — 1)K3 , are given as follows.

VK) = xuyyll<i<3kl<j<nml<t<a+b-1)

EKS) = (xyyyll <i<31<j<ml<t<a+b-1}

Graph (a + b — 1)Kj3 , is given in Figure 2.

ha Y21 Yatb-1,1
. T2.1 .
Iy y Tatb-1,1
2 2
Y12 o Ya+b-1,2
o - o O O ©O °
ry2 ° o o La+b-1.2 o
[+] o [}
Yo2un
. ,
J‘IJH -Ur1+h—| m

T3 Tatb-1,3

Figure 2: (a+b—1)K3,

In Theorem 2.6, we show that for some positive integers a, b, and n, the graph (a + b — 1)K;3, is a Ramsey-minimal
graph for (aK,, bK3 ) .

Theorem 2.6. Let a,b, and n be three positive integers. Let (a +b — 1)K3, be a graph in Definition 0. Then, (a+b —
DK;3, € R(aK;, bK3 ).

Proof. First, we show that (a +b — 1)K, , = (aK;,bK3,). Consider any red-blue coloring of the edges of the graph
(a+b —1)K;3,. Suppose that there is no red aK, in the coloring. Therefore, the possible maximum red subgraph is (a —

for 1 <i < a— 1 with one red K, each, and the remaining

edge are colored blue. Note that the subgraph Kg)n does not contain K3, blue and b subgraph KSL contain bKj3, blue, for

a+1<j<a+b—1 Therefore, (a+b— 1)Kz, = (aK, bK3 ).

1)K,. Without loss of generality, color any edge of the graph KY

3,n°

Next, we show that Ve € (a+b —1)K3,, (a+b—1)K3, = (a+b—1)K;,\{e} » (aK,, bK;,). Without loss of
generality, let the deleted edge is in the subgraph Kglr)l Then, color any edge of the subgraph Kgl, for 2 < i < a with one red
K, and the remaining edge are colored blue. Note that the subgraph Kgl)n does not contain K3 , blue and b subgraph ngl only
contains (b — 1)K3,, blue, fora+ 1 < j <a+b — 1. Therefore, (a + b — 1)K3,, » (aK;, bK3 ).

(QE.D)
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ITII. CONCLUSIONS
In this paper, we have determined that Q(t, 3,n) € R((t + 1)K;,K3,) and (a + b — 1)K;3,, € R(aK;, bK; ).
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