SCHOLAR AI
Be Smart

Social-Economic Advantages Of Weighted C-Centers And MCenters In North Macedonia

Bukurie Imeri-Jusufi ${ }^{1}$ Teuta Jusufi-Zenku ${ }^{2}$ Azir Jusufi ${ }^{3}$
${ }^{1,2}$ University " Mother Teresa"-Skopje
${ }^{3}$ University of Tetova-Tetovo
bukurie.imeri@unt.edu.mk teuta.zenku@unt.edu.mk
azir.jusufi@unite.edu.mk

Abstract

Graph theory has many applications, because with the help of graphs we can model various complex problems, such as the placement of roads and intersections, the placement of electricity networks, computer networks, the placement of facilities of public importance, etc. Starting from the chaos that appears in the Capital, especially in front of the University Clinic or facilities of public importance, we decided to give a mathematical solution to these problems. In the paper, in addition to the theoretical elaboration on the concepts of graph theory, Floyd's Algorithm for minimum distances, concepts for weighted c-centers and m-centers, we will build the graph of the most important roads in North Macedonia, where as vertices we will use cities and crossroads in North Macedonia, then we will find c-centers and m-centers without and with weight in North Macedonia, and we will give some reasoning on the socio-economic advantages of these centers.

Keywords - Graph, algorithm, c-center, m-center, weight, North Macedonia, socio-economic favors

I. INTRODUCTION

The object location problem is a classic problem that has been studied since the Weber Location Problem in 1909. Such problems require special attention. Thus, the best locations for a group of objects should be positioned in those places that should meet the most of the service requirements for a group of customers. In a broader sense we will use "object". This means that it is intended to include entities such as factories, hospitals, electronic communication centers and emergency warning sirens, customs, etc. The inclusiveness of location decision-making has led in a particular interest to analyze models, different algorithms for finding optimal solutions, to decide where to place the objects, along with determining how to assign the demand to the placed objects in order to use the resources in more effective way.

II. The main concepts of Graph Theory

2.1. Definition of graph. Examples

Let V be a nonempty finite set: $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Such a set can be represented by a diagram, where its elements are marked with dots. Each such point is called a vertex. If two of its elements v_{i}, v_{j}, not necessarily different, are examined together, then those points are connected in the diagram with rectilinear or arcuate segments, where one end is point v_{i} and the other is point v_{j}. Such a segment is called a edge and is denoted $v_{i} v_{j}$, where the order does not matter. Note that two such points can be connected by more than one edge, when the vertices are the same point, the edge is represented by a loop.

Let E be a set of edges with endpoints at the vertices of the set V.

Definition 2.1.1. . In the above conditions, the pair $G=(V, E)$, where V is the finite non-empty set of vertices, while E is the finite set of edges, is called a graph.

Example 2.1.2. The graph $G=(V, E)$ is given in the diagram below (Fig. 2.1.1). Find V and E.

Fig. 2.1.1.
Solution. $V=\{u, v, w, x, y, z\} ; E=\{u x, u y, u z, v x, v y, v z, w x, w y, w z\}$.

Definition 2.1.3.

- The vertices of an edge are called ends;
- Two vertices are called neighbors, if there is an edge that connects them;
- Two edges are called incidents, if they have a common vertex;
- The graph is called simple, if there are no loops;
- A graph that has vertices but no edges is called an empty graph.

Definition 2.1.4. Graph $H=\left(V_{H}, E_{H}\right)$ is called a subgraph of a graph $G=\left(V_{G}, E_{G}\right)$, if $V_{H} \subseteq V_{G}$ and $E_{H} \subseteq E_{G}$. Marked $H \leq G$.
Definition 2.1.5. ([4], page 225) Oriented graph is called a ordered pair $G=(V, E)$, where V is the finite nonempty set, while E is the subset of the Cartesian product $V \times V$.

If the element $\left(x_{i}, x_{j}\right)$ took part p - times in E, then the graph G is called a p-graph. Consequently, if every pair $\left(x_{i}, x_{j}\right)$ is part of E only once, then the graph G is called a 1-graph.

Definition 2.1.5. An ordered system of vertices $\left(x_{0}, x_{1}, x_{2}, \ldots, x_{r}\right), r \geq 1$ of graph $G=(V, E)$ such that, each of the edges $x_{i} x_{i+1}$, for i $=0,1, \ldots, r-1$, belongs to graph G, it is called a path in G. The vertex x_{0} is called the beginning of the path, while x_{r} it is called the end of the path.

Definition 2.1.6. Let be given the graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, where $V 1 \cap V 2=\varnothing$ (are disjoint). Graph $G=(V, E)=G_{1} \cup G_{2}$, where $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$ is called graph union of G_{1} and G_{2}.

Definition 2.1.7. A graph is called connected, if it is not a union of two graphs. In the opposite case, we say that the graph is disconnected.

2.2. Weighted Graph. The minimum distance-shortest path problem

Let $G=(V, E)$ be a directed graph, about which a function is given $W: E \rightarrow R_{0}^{+}$, that each of his edge $e \in E$ is accompanied by only one non-negative real number $W(e)$, which is called weight of edge e or weighted length (short, length) of edge e or weighted distance (short, distance) between the ends of edge e. If the edge is $e=(v i, v j)$, then we note its weighted length with

$$
W_{i, j}: W\left(v_{i}, v_{j}\right)=W_{i, j} .
$$

Definition 2.2.1. A graph G equipped with a function W of the weights of its edges is called a weighted graph and denoted by G^{W}.
For the subgraph H of graph G^{W}, the number $W(H)=\sum_{e \in E(H)} w(e)$ is called the overall weight of the subgraph H.
In particular, if H is a path $P=\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{p}}\right)$ from G^{W}, then the $\operatorname{sum} W(P)=\sum_{k=1}^{p-1} W_{i_{k}, i_{k+1}}$ is called weighted length (short, length) of the path P. Each individual graph vertex G^{W} we consider it as a path of length 0 .

In a directed graph there may be several paths starting at $v i$ and ending at $v j$. Of interest is knowing those paths that have the smallest length, otherwise we say the search for the shortest path starting at a vertex $v i$ and ending at a vertex $v j$. The length of the shortest path starting at $v i$ and ending at $v j$ is called the minimum distance between vertices $v i$ and $v j$ and is denoted by $d(v i, v j)$, ie.

$$
d\left(v_{i}, v_{j}\right)=\min \left\{W(P) \mid P \text { it is path with a beggining } v_{i} \text { and ending } v_{j}\right\}
$$

It is clear that shortest paths are required between elementary paths. Since the number of graph vertices is finite, the number of different elementary paths between two vertices is also finite. This makes it possible to find the shortest paths, but aim for the best way, which is given by certain algorithms.

Note. When the graph is undirected, as for example in the graph of the mathematical model of building a highway at minimum cost between two cities (see [4], example on page 270), taking the cost as a weight, and considering that the highway works in both directions, such a graph is considered as a directed graph with two-way edges [8].

2.3. Floyd's algorithm

This algorithm solves the problem of minimum distances and shortest paths between any two vertices of a 1-graph with a discrete distance matrix $\mathrm{A}=\left(l_{i j}\right)_{\mathrm{nxm}}$.

The initial step: Let's take the matrices $\mathrm{A}_{0}=\left(l_{i j}^{(0)}\right)_{\mathrm{nxm}}$ and $\mathrm{S}_{0}=\left(s_{i j}^{(0)}\right)_{\mathrm{nxm}}$ such that $l_{i j}^{(0)}=1_{\mathrm{ij}}$ and $s_{i j}^{(0)}=\mathrm{j}$ for each $\mathrm{i}, \mathrm{j}=1,2, \ldots, \mathrm{n}$. We take $k=1$ and we go to the general step.
General step (k): We find the matrices $\mathrm{A}_{\mathrm{k}}=\left(l_{i j}^{(k)}\right)_{\mathrm{nxm}}$ and $\mathbf{S}_{\mathbf{k}}=\left(s_{i j}^{(k)}\right)_{\mathrm{nxm}}$ where:

$$
\begin{gathered}
l_{i j}^{(k)}=\left\{\begin{array}{c}
\min \left(l_{i j}^{(k-1)}, l_{i k}^{(k-1)}+l_{k j}^{(k-1)}\right) \text { for } i \neq k, j \neq k \\
l_{i j}^{(k-1)} \\
\text { for } i=k \text { and } \mid \text { or } j=k
\end{array}\right. \\
S_{i j}^{(k)}=\left\{\begin{array}{cc}
k \text { for } i, j \neq k \text { such that } l_{i k}^{(k-1)}+l_{k j}^{(k-1)}<l_{i j}^{(k-1)} \\
S_{i j}^{(k)} & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

We make k equal to $(k+1)$ and repeat the general step until k takes the value n. The matrix $A n$ found at the end of the n-steps is the matrix of minimum distances between graph vertices, so $A n=A^{*} .[2],[3]$

2.4. Concepts of centers in Graphs

In practice, it is often required to find the "most suitable" place to build a facility that serves several peripheral points which may be residential centers or different points that require service. Example, in a given region where it is better to place a health, social-cultural facility, or a shopping center, serving the residential centers, for a telegraphic network where it is better to place the information processing center (central). Depending on the criterion of optimality for the position of this object, we consider two types of such problems:

- The first includes those problems where the most suitable place for the object is considered the one from which the minimum distance from the object to the peripheral points is the smallest possible. This type includes the problem of placing the socialcultural or health facility.
- In problems of the second type, the most suitable place for the object is the one from which the sum of the lengths of all the shortest paths connecting the object with peripheral points is the smallest possible. It is more economical that the total length of the conductors connecting the points of the telegraph network to the switchboard to be minimal, therefore this problem belongs to the problems of the second type. [2]

2.4.1. Centers in Graphs

If we take a graph $G=(V, E)$ which is connected with n vertices, we put each edge $u \in E$ in correspondence with a non-negative number $l(u)$. We denote by $l^{*}\left(x_{i}, x_{j}\right)$ the minimum distance from x_{i} to x_{j}.

- The vertex $x_{c} \in V$ such that for each $\mathrm{i}=1,2, . ., \mathrm{n}$ satisfies the inequality:
$\max _{1 \leq j \leq n} l^{*}\left(x_{c}, x_{j}\right) \leq \max _{1 \leq j \leq n} l^{*}\left(x_{i}, x_{j}\right)$ it is called the c-center of graph. In other words c-center is the vertex where it is reached

$$
\min _{1 \leq i \leq n}\left\{\max _{1 \leq j \leq n} l^{*}\left(x_{i}, x_{j}\right)\right\}
$$

- The vertex $x_{m} \in V$ such that for every $\mathrm{i}=1,2, . ., \mathrm{n}$ satisfies the inequality:
$\sum_{j=1}^{n} l^{*}\left(x_{m}, x_{j}\right) \leq \sum_{j=1}^{n} l^{*}\left(x_{i}, x_{j}\right)$, it is called the m-center of graph.
In other words m -center is the vertex where it is reached

$$
\min _{1 \leq i \leq n}\left\{\sum_{j=1}^{n} l^{*}\left(x_{i}, x_{j}\right)\right\}
$$

We consider that for each vertex $x_{j} \in V$ we have given a positive number w_{j} which we call its weight. In different problems w_{j} has different meanings, for example, in placing a service center in an area,, w_{j} can also indicate the number of inhabitants of the ith settlement.

- weighted c-center of graph G is called every vertex $x_{c} \in V$ such that:
$\max _{1 \leq j \leq n}\left\{w_{j} l^{*}\left(x_{c}, x_{j}\right)\right\} \leq \max _{1 \leq j \leq n}\left\{w_{j} l^{*}\left(x_{i}, x_{j}\right)\right\}$
for each $i=1,2, . ., n$
- weighted m-center of graph G is called every vertex $x_{m} \in V$ such that:
$\sum_{j=1}^{n} w_{j} l^{*}\left(x_{m}, x_{j}\right) \leq \sum_{j=1}^{n} w_{j} l^{*}\left(x_{i}, x_{j}\right)$ for each $\mathrm{i}=1,2, . ., \mathrm{n}$
In the above definitions, the center exists only when the left sides of the inequalities are finite numbers. On the contrary, it is said that the graph has no center, namely c-center or m-center. It is clear that G will have a center, if and only if there is at least one vertex from which every other vertex can be traversed by paths in G. In the above definitions, the vertices are considered with the same "rights". In practice this consideration is not always appropriate. For example, in the establishment of a health or socialcultural facility that serves several residential centers, the number of residents of each residential center should also be taken into in consideration, which means; that the service facility should be as close as possible to centers with more residents. [2],[3]

2.4.2 A way to find centers

All four types of centers defined above are very easily found through the matrix A^{*} which we find with the help of Floyd's Algorithm.
i) For simple centers, we add to the matrix A^{*} a column where we place the largest element of each row and a column where we place the sum of each row. The vertex belonging to the smallest element in the first added column represents the c-center, while the vertex belonging to the smallest element in the second added column represents the graph m-center.
ii) To get the weighted c-center and the weighted m-center, first the columns of the matrix A^{*} are multiplied by the weights wj of the vertices respectively and then act in the same way as in point i).

III. C-CENTER AND M-Center in North Macedonia (results)

3.1. Simple c-center and m-center

At the beginning, we give the graph of the most important roads of North Macedonia (fig. 3.1.1)

Fig.3.1.1
Where the circles with numbers represent the cities or crossroads, while the rectangles represent the distances or weights of the edges.

In table 3.1.1 we present the data on the ordinal numbers of the vertices and the population of each settlement.
Tab.3.1.1.

Nr	Settlement	Population
1.	Skopje	607000
2.	Tetovo	185000
3.	Gostivar	106000
4.	Mavrovo	8000
5.	Kicevo	56000
6.	Debar	26000
7.	Podmolje	330
8.	Struga	65000
9.	Ohrid	61000
10.	Resen	16500
11.	Bitola	105000
12.	Demir Hisar	9400
13.	Krushevo	9600
14.	Makedonski Brod	11600
15.	Prilep	96000
16.	Kumanovo	127000
17.	Petrovec	8200
18.	Veles	64000
19.	Gradsko	2200

20.	Kavadarci	42000
21.	Negotino	20000
22.	Demir Kapija	3000
23.	Gevgelija	23000
24.	Valandovo	11500
25.	Dojran	3400
26	Strumica	66000
27.	Radovish	31000
28.	Shtip	51000
29.	Kadrifakovo	160
30.	Sveti Nikole	21000
31.	Probishtip	16000
32.	Kratovo	10000
33.	Kriva Palanka	24000
34.	Makedonska Kam.	5000
35.	Delcevo	20000
36.	Kocani	48000
37.	Vinica	19000
38.	Pehcevo	3000
39.	Berovo	16000

We use the Floyd-id Algorithm for finding A^{*} and act according to the explanations we have in 2.4.1. and 2.4.2.i), we get table 3.1.2.

Tab.3.1.2

Which is given as appendix 1.
From table 3.1.2 it can be seen that the c-center is the vertex 17 belonging to the settlement Petrovec, while the m-center is vertex 18 belonging to the settlement Veles.

3.2 Weighted c-center and weighted m-center in North Macedonia

After the actions as in explanations 2.4.2.ii) we take table 3.1.3.
Tab.3.1.3

Which is given as appendix 2.
From table 3.1.3 it is observed that:

- weighted c-center is the vertex 17 which belongs to the settlement Petrovec, while
- weighted m-center is the vertex 1 belonging to the capital Skopje.

If we analyze appendix 2 further, we notice that:

- the second weighted c-center is the vertex 1 - the city of Skopje
- the third weighted c-center is the vertex 16 - the city of Kumanovo, while
- the second weighted m-center is the vertex 17 - Petrovec settlement
- the third weighted m-center is the vertex 2 - the city of Tetovo

Remark. In the graph above, we have not considered the permitted speed of vehicle movements on the road. If speed is also considered, then the c,m-centers may change.

IV. The social-ECONOMIC adVantages of weighted c-Centers and weighted m-centers

Looking at the results we obtained for weighted c-centers and weighted m-centers and considering the theoretical treatment for c -centers and m -centers, then we are listing some economic and social advantages for weighted c -centers and for weighted m centers:

4.1 Socio-economic advantages of weighted c-centers

The facilities of public importance in North Macedonia of the first type (hospital, university, training facility, etc.) should be placed in vertex 17 (or as an alternative 1 and 16), i.e. in Petrovec (as an alternative Skopje, Kumanovo), for the reason that:

The smallest average distance for each endpoint in North Macedonia turns out to be Petrovec (the second weighted c-center is Skopje and the third weighted c-center is Kumanovo)

- Not far from Petrovec are the big cities of North Macedonia.
- On average, the cost of transportation of goods and services in North Macedonia falls
- The capital is relieved of heavy traffic
- Petroveci (Skopje, Kumanova), develop more economically, for the reason that small commercial services can be opened around these objects
- The weight of the capital is distributed
- New employment opportunities for weighted c-centers are opened
- The internal displacement of the population to the Capital is stopped.

4.2. Socio-economic advantages of weighted m-centers

The facilities of public importance in North Macedonia of the second type (information processing centers, distribution centers should be located in the vertex 1 (or alternatively 17 and 2), i.e. in the city of Skopje (Petrovec, Tetovo), for the reason that:

- The distribution of networks throughout North Macedonia will have a lower cost, if this distribution has its center in Skopje.
- Not far from Skopje are the big cities of North Macedonia.
- On average, the cost of building such networks decreases
- Skopje (Petrovec, Tetovo) develop more economically, for the reason that small commercial services can be opened around these objects
- New employment opportunities are opened for weighted m-centers

V. Conclusions

After a theoretical support that we gave to our aim, we successfully reached some significant results:

- weighted c-center in North Macedonia is Petroveci
- weighted m-centre in North Macedonia is Skopje
- Some socio-economic arguments were given for these centers

We hope that with this paper we have managed to solve some issues on the placement of public facilities in North Macedonia.

References

[1] Rosen H.K.,Discrete Mathematics and its Applications, Sixth AT\&T Laboratories Edition International Edition, The McGraw-Hill Companies, 2007
[2] Thoma Mitre, Alma Spaho, Matematika e Zbatuar, Tirane, 2016
[3] Hysen Binjaku, Ushtrime te Matematikes, Tirane, 2010
[4] Kedhi V. Kërkimi operacional (Një hyrje), Dita Print, Tiranë 2017.
[5] Robin J. Wilson, Introduction to Graph Theory, Fourth edition, 1998
[6] D. Cvetkovic, M. Milic, Teorija grafova i njene primene, Beograd, 1971
[7] Vasillaq Kedhi, Grafet and rrjedhat ne rrjeta, Tirane, 2000
[8] A. Jusufi, K. Filip, Matematike Diskrete and aplikime, Prishtine, 2022

Appendix 1

Appendix 2

